
Access-Efficient Balanced Bloom Filters

Yossi Kanizo
Dept. of Computer Science

Technion, Haifa, Israel

ykanizo@cs.technion.ac.il

David Hay
School of Computer Science and Engineering

Hebrew University, Jerusalem, Israel

dhay@cs.huji.ac.il

Isaac Keslassy
Dept. of Electrical Engineering

Technion, Haifa, Israel

isaac@ee.technion.ac.il

Abstract—Bloom Filters should particularly suit network de-
vices, because of their low theoretical memory-access rates.
However, in practice, since memory is often divided into blocks
and Bloom Filters hash elements into several arbitrary memory
blocks, Bloom Filters actually need high memory-access rates.
On the other hand, hashing all Bloom Filter elements into a
single memory block to solve this problem also yields high false
positive rates.

In this paper, we propose to implement load-balancing schemes
for the choice of the memory block, along with an optional
overflow list, resulting in improved false positive rates while
keeping a high memory-access efficiency. To study this problem,
we define, analyze and solve a fundamental access-constrained
balancing problem, where incoming elements need to be optimally
balanced across resources while satisfying average and instanta-
neous constraints on the number of memory accesses associated
with checking the current load of the resources. We then build
on this problem to suggest a new access-efficient Bloom Filter
scheme, called the Balanced Bloom Filter. Finally, we show that
this scheme can reduce the false positive rate by up to two orders
of magnitude, with a worst-case cost of up to 3 memory accesses
for each element and an overflow list size of 0.5% of the elements.

I. INTRODUCTION

The Bloom Filter is a space-efficient randomized data struc-

ture that supports approximate set membership queries [1].

Its quality is measured by its false positive rate (FPR), i.e.

the probability that a set membership query returns TRUE,

while the element is not in the set; Bloom Filters always

have zero false negative rate. Bloom Filters are often used in

network applications for caching, routing, forwarding, traffic

monitoring, and traffic measurements [2], [3].

Unfortunately, while efficient in memory space, Bloom

Filters require a significant number of memory accesses. For

instance, a Bloom Filter with 30 bits per element yields

negligible FPR, but also requires to access about 30 · ln 2 ≈ 21
memory bits per element. Note that each of these bits can

reside in an arbitrary location over the memory space. Thus,

such a Bloom Filter would need a prohibitive memory access

bandwidth when either implemented in an off-chip setting (that

is, requiring accessing 21 memory blocks per element) or

distributed over a network (equivalently, it may be required

to access 21 nodes per element).

One proposal to improve the access-efficiency of Bloom

Filters is to use a Blocked Bloom Filter [4], [5], in which

each element is first hashed using a single hash function

to one of the memory blocks, and then the memory block

operates a local Bloom Filter. Although this technique is

clearly access-efficient, since each element requires to access a

single memory block, it also suffers from a high false positive

rate, due to a typical load imbalance between the memory

blocks. Such an imbalance is inherent in this scheme due

to the fact that, given n elements and n memory blocks,

the maximum block load is O (log n/ log log n) with high

probability, while the average block load is 1 [6].

To tackle this problem, our basic approach is to use load-

balancing schemes, making the number of elements in each

memory block as balanced as possible. We further propose to

use an overflow list that stores elements hashed to overloaded

memory-blocks. The overflow list is typically small. For

example, it can be implemented using a content-addressable

memory (CAM), which supports parallel-lookup operations.

We study this problem using a general access-efficient

approach to the balancing problem, a fundamental problem

that lies at the core of many operations and applications in

modern distributed and communication systems.

We model the balancing problem using a balls and bins

model [7], and more specifically its sequential multiple-choice

variant [6]. In this model, n balls are placed in m bins.

Before placing a ball, d bins are chosen according to some

distribution (e.g., uniformly at random) and the ball is placed

in one of these bins following some rule (for example, in the

least occupied bin). Moreover, we consider an extension of

this model that allows a small fraction γ of the balls not to

be placed in the bins; these balls are either disregarded or

stored in a dedicated overflow list, usually implemented in

an expensive memory (a similar model was considered, for

example, in [8]). The quality of the balancing is measured by

the load on the bins: The resulting load at each bin induces a

certain cost, which is calculated by an arbitrary non-decreasing

convex cost function φ. Our goal is to minimize the overall

expected cost of the system.

We further impose the following restriction: each operation

can look at up to a < d bins on average, before deciding

where to place the ball. Note that in most reasonable scenarios,

checking the status of a bin (e.g., its occupancy) corresponds

to either a memory access or a probe over the network. Thus,

our restriction can be viewed as imposing a memory access

budget on the insertion algorithm. Given this access budget,

we aim at achieving the highest-quality balancing.

Our Contributions: In this paper, we propose a new

access-efficient Bloom Filter architecture, called Balanced

Bloom Filter. We first maintain balancing schemes to distribute

the elements between the memory blocks. The basic way of

operation of these schemes is to query the load of the hashed

memory block, and in case the load exceeds some threshold,

another hash function is used. We also propose to use an

optional overflow list to store elements that all hash functions

used map to already overloaded memory blocks.

To study this problem, we explore the optimality region

of the balancing problem. Namely, we consider different

balancing schemes at different loads, and determine several

selections of the access budget a and the overflow fraction

γ such that the balancing scheme is optimal with respect to

the cost function φ. In particular, given some access budget a
within a predetermined range, we will show that our scheme

is optimal for some γ(a), and for any γ satisfying γ ≥ γ(a),
thus defining an optimality region over the (a, γ) plane.

To show optimality, we first provide lower bounds on the

minimum cost of each instance of the problem. The lower

bound depends on the access budget a, the number of hash

functions d, and the overflow list size, but, quite surprisingly,

does not depend on the cost function φ. Our lower bounds

hold when all hash functions have uniform distribution or

when their overall distribution is uniform (in the latter case,

the hash function distributions can be different). Then, we

provide three different schemes that meet the lower bounds

on different access budgets; we further find the minimum

size of the overflow list that should be provided in order to

achieve optimality. All our analytical models are compared

with simulations showing their accuracy.

We conclude by showing how, with a proper choice of the

cost function φ, the balancing problem can be directly used to

optimize Bloom Filters. For example, for an average number

of access operations of 1.2, and 0.5% of the elements stored

in the overflow list, the false positive rate can be reduced by

up to two orders of magnitude.

Further, since the cost function φ is general, our approach

can have many applications, such as other Bloom Filter im-

plementations [9], Counting Bloom Filter variants [10], [11],

and linked-list–based hash tables with optimal variance [12].

Paper Organization: We first describe our basic archi-

tecture of the Balanced Bloom Filters in Section II. Then, the

optimal balancing problem is defined in Section III, followed

by our lower bound results in Section IV. The three optimal

schemes and their analysis are presented in Sections V, VI,

and VII, while a comparative study appears in Section VIII.

In Section IX we show how the solution of the balancing

problem can be used to construct access-efficient Balanced

Bloom Filters. Finally, Section X surveys related work.

Due to space limits, the detailed proofs and an additional

application of our study are presented in [12].

II. BALANCED BLOOM FILTERS

In this section we present the basic architecture of the

Balanced Bloom Filter. Our architecture follows the two

guidelines of balancing the elements between the memory

blocks and the usage of an overflow list.

In our basic architecture, illustrated in Fig. 1, each memory

block functions as a local Bloom Filter, with the only mod-

1

0

0

0

1

1

0

0

0

0

0

0

1

1

1

0

1

1

1

0

1

0

0

1

1

1

0

0

1

1

1

0

1

1

1

0

1

1

0

0

1

1

00 01 10 11 00 01 00 address:

1
T

2T
3T

y
()1H y

()2H y

()3H y

 x

overflow

 list

⋮

counters

local Bloom

Filters

Fig. 1. Illustration of a Balanced Bloom Filter implementation based on
MHT, with three subtables.

ification that the memory block also saves some bits for a

counter storing the number of elements inserted locally.

Although any balancing scheme can be used, for the purpose

of the section we rely on a special case of the multi-level hash

table (MHT) balancing scheme.The memory is divided into d
separate subtables T1, . . . , Td, with a uniform hash function

for each one of these subtables. Upon an element arrival, it is

placed in the first subtable in which the corresponding mapped

memory block has load lower than a pre-defined threshold h.

If no such memory block exists, the element is placed in the

overflow list. As a consequence, a lookup operation follows

the exact same steps as the insertion operation.

Fig. 1 illustrates an insertion of a new element with h = 3.

The memory consists of 3 subtables of decreasing size, with

4, 2 and 1 memory blocks, respectively. Each memory block

is of size 6 bits, with 2 bits for the counter and 4 for the local

Bloom Filter. When element y arrives, it is first hashed into

the memory block of subtable T1 with address 10. The counter

at this memory block indicates that 3 elements have already

been inserted. Since this load is equal to the threshold h = 3,

the scheme then tries to insert the element into subtable T2.

In this subtable, the element is hashed into the memory block

with address 01, where there are 2 elements. Since 2 < h, the

element is inserted into this memory block. The dashed arrow

to subtable T3 illustrates a hash function that is not actually

performed. In addition, the element x is in the overflow list

because all of its corresponding buckets were full upon its

insertion.

III. PROBLEM STATEMENT

To further study our problem, we first define and solve

the optimal access-constrained balancing problem in the fol-

lowing sections. In this section, we define the notations and

settings of this balancing problem.

Let B be a set of m buckets (or bins) of unbounded size,

and let E be a set of n elements (or balls) that should be

distributed among the buckets. In addition, denote by r = n
m

the element-per-bucket ratio.

Assume also that there exists an overflow list [8], i.e. a

special bucket of bounded size γ ·n (namely, at most a fraction

γ of the elements can be placed in the list), which can be

used by the insertion algorithm at any time. For example,

depending on the application, the overflow list may correspond

to a dedicated memory—e.g., content-addressable memory

(CAM)—in hardware-implemented hash-table, or to the loss

ratio when the balancing scheme is allowed to drop elements.

Elements are inserted into either one of the m buckets or

the overflow list, according to some balancing scheme with at

most d hash-functions per element, which is defined as follows

(a similar definition appears in [13]).

Definition 1: A balancing scheme consists of:

(i) d hash-function probability distributions over bucket set B,

used to generate a hash-function set H = {H1, . . . , Hd} of d
independent random hash functions;

(ii) an insertion algorithm that places each element x ∈ E in

one of the d buckets {H1(x), . . . , Hd(x)} or in the overflow

list. The insertion algorithm is an online algorithm, which

places the elements one after the other with no knowledge

of future elements.

The access-efficiency of a balancing scheme is measured by

the number of bucket accesses needed to store the incoming

elements. We assume that a balancing scheme needs to access

a bucket to obtain any information on it. We do not count

accesses to the overflow list.

We further consider two constraints, which can be seen

as either power- or throughput-constraints depending on the

application. First, we require that the average number of

bucket accesses per element insertion must be bounded by

some constant a ≥ 0. In addition, notice that the worst-case

number of bucket accesses per element insertion is always

bounded by d, because an element does not need to consider

any of its d hash functions more than once. These two

constraints are captured by the following definition:

Definition 2: An 〈a, d, r〉 balancing scheme is a balancing

scheme that inserts all elements with an average (respectively,

maximum) number of bucket accesses per insertion of at most

a (respectively, d), when given an element per bucket ratio r.

We are now ready to define the optimal balancing problem,

which is the focus of this paper. Let φ : N 7→ R be the cost

function mapping the occupancy of a bucket to its real-valued

cost. We assume that φ is non-decreasing and convex. Our

goal is to minimize the expected overall cost:

Definition 3: Let Oj be a random variable that counts

the number of elements in the j-th bucket. Given γ, a,

d and r, the OPTIMAL ACCESS-CONSTRAINED BALANCING

PROBLEM consists of finding an 〈a, d, r〉 balancing scheme

that minimizes

φBAL = lim
m→∞

1

m

m
∑

j=1

E (φ (Oj)).

Whenever defined, let φBAL
OPT denote its optimal cost.

For example, in the trivial case of the identity cost function

φ(x) = x and no overflow list (γ = 0), φBAL
OPT corresponds to

the average load per bucket, which is exactly r, no matter what

insertion algorithm or hash functions are used.

IV. THEORETICAL LOWER BOUNDS

We next show a lower bound on the achievable value of

the optimal cost φBAL
OPT , as a function of the number of buckets

m, the number of elements n, the average number of bucket

accesses a, and the overflow fraction γ.

The lower bound is derived using a modified offline setting.

In this setting, each bucket access is considered as a distinct

element, as if initially a · n distinct elements were hashed to

the buckets, using a single hash function each. After storing

all elements, we conceptually choose exactly (a− 1 + γ) · n
of the elements in a way that minimizes the cost function

φBAL, resulting in exactly (1− γ) · n elements in the buckets.

Since the cost function φ is convex, then the marginal cost

is the largest in the most occupied buckets. Therefore, a

cost-minimizing removal process would remove element by

element, picking the next element to remove in the most

occupied bucket at each time.

Since we picked these elements in an offline manner, we

necessarily perform better than any online setting. Thus, we

bound the achievable value of φBAL
OPT .

Theorem 1: When all hash functions are uniform, the op-
timal expected limit balancing cost φBAL

OPT in the OPTIMAL

ACCESS-CONSTRAINED BALANCING PROBLEM is lower-
bounded by

φ
BAL

LB =

k0+1
∑

j=0

PLB (i) · φ (i) ,

where k0 is the largest integer such that

a · r · Γ (k0, a · r)

(k0 − 1)!
+ k0 ·

(

1−
Γ (k0 + 1, a · r)

k0!

)

< r (1− γ) ,

Γ (s, x) =
∫

∞

x
ts−1e−tdt is the upper incomplete gamma

function, and PLB is a specific distribution that depends only

on a, r, and γ, but does not depend on the cost function φ.
Specifically, the distribution PLB is defined as follows:

PLB (i) =























e−a·r (a·r)i

i!
0 ≤ i < k0

e−a·r (a·r)k0

k0!
+ e0 + k0 + 1−

k0p0 − p0 − r · (1− γ)
i = k0

−e0 − k0 + k0p0 + r · (1− γ) i = k0 + 1
0 otherwise

where e0 = a·r·Γ(k0,a·r)
(k0−1)! , and p0 = Γ(k0+1,a·r)

(k0)!
.

Proof Outline: (We remind that full proofs are provided

in [12]) As explained, the proof considers an offline setting

with a · n elements. We then note that the random variable

X that counts the number of elements in a specific bucket

after the initial placement of the a · n elements is distributed

approximately as Poisson with λ = a·n
m

, whose cumulative dis-

tribution function (CDF) is given by Pr{X ≤ x} = Γ(x+1,λ)
x! .

Since elements are then removed one by one from the largest

buckets, we intuitively “cut the right side” of the Poisson

distribution, up to a precise point k0 provided by the problem

parameters.

Interestingly, the element-elimination algorithm does not

depend on the precise convex cost function φ. This is why

the resulting bucket-load distribution PLB is independent of φ
as well.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

bucket occupancy

p
ro

b
a

b
ili

ty

a=1

a=1.1

a=1.2

Fig. 2. The probability density function of the distribution PLB over the
bucket occupancies with load r = 8, overflow fraction γ = 0, and different
values of average access rate a.

In addition, this distribution PLB is defined on a compact

space. As a result, it can also be shown that if a sequence

of cost functions {φk} converges pointwise to some cost

function φ, then the sequence of lower bounds converges as

well to the corresponding lower bound on φ. This can then be

used to extend the cost functions to the maximum-load metric

commonly used in the literature [6], [14], [15].

Fig. 2 shows the lower-bound distribution PLB (i) for load

r = n
m

= 8, overflow fraction γ = 0 and average access rate

a ∈ {1, 1.1, 1.2}. Note that when a = 1, all elements use a

single lookup, and therefore there is no element elimination

in the offline algorithm. The distribution PLB simply follows a

Poisson distribution with parameter λ = r, as shown using the

solid line. Then, for larger values of a, the element elimination

algorithm reduces the probability of having a large bin load.

We also consider a setting where ℓ ≤ d different distribu-

tions over the buckets are used by the d hash functions. Denote

these distributions by f1, . . . , f ℓ, and assume that distribution

f i is used by a fraction ki of the total bucket accesses, with
∑ℓ

i=1 ki = 1. We now show that Theorem 1 holds also in this

case when
∑ℓ

p=1 kpfp(i) =
1
m

.

Theorem 2: If
∑ℓ

p=1 kpfp(i) = 1
m

then the optimal ex-

pected limit balancing cost φBAL
OPT in the OPTIMAL ACCESS-

CONSTRAINED BALANCING PROBLEM has the same lower

bound as in Theorem 1.

V. SINGLE - A SINGLE-CHOICE BALANCING SCHEME

We have found a lower-bound for the optimal cost. In the

sequel, we focus on finding values of a and γ in which we

can match this bound.

We start by analyzing a simplistic balancing scheme, de-

noted SINGLE, that is associated with 2 parameters h and

p. This scheme only uses a single uniformly-distributed hash

function H . Each element is stored in bucket H (x) if it has

less than h elements. In case there are exactly h elements, the

element is stored in the bucket with probability p and in the

overflow list with probability 1− p. Otherwise, the element is

stored in the overflow list.

In recent years, several balancing schemes have been mod-

eled using a deterministic system of differential equations [13],

[16]–[18]. We adopt this approach and provide a succinct

description of SINGLE in [12]. Then, we solve the system of

differential equations yielding the following optimality result.

Theorem 3: Consider the SINGLE balancing scheme with

m buckets and n elements, and use the notations of k0, p0,

e0 and P from Theorem 1. Then for any value of γ, the

SINGLE scheme solves the OPTIMAL ACCESS-CONSTRAINED

BALANCING PROBLEM for a = 1 whenever it satisfies the two

following conditions:

(i) h = k0;

(ii) p is the solution of the following fixed-point equation:
e−p·r

(1−p)h
−

e−r

(1−p)h

∑h−1
i=0

(r·(1−p))i

i!
= P (k0) .

VI. SEQUENTIAL - A MULTIPLE-CHOICE BALANCING

SCHEME

We now introduce the SEQUENTIAL scheme, which is also

associated with two parameters h and p. In the SEQUENTIAL

scheme, we use an ordered collection of d hash functions H =
{H1, . . . , Hd}, such that all functions are independent and uni-

formly distributed. Upon inserting an element x, the scheme

successively reads the buckets H1(x), H2(x), . . . , Hd(x), and

places x in the first bucket that satisfies one of the following

two conditions: (i) the bucket stores less than h elements, or,

(ii) the bucket stores exactly h elements, and x is inserted

with probability p. If the insertion algorithm fails to store

the element in all the d buckets, x is stored in the overflow

list. Last, to keep an average number of bucket accesses per

element of at most a, the process stops when a total of a · n
bucket accesses has been reached; the remaining elements are

placed in the overflow list.

We analyze the SEQUENTIAL scheme by reducing it to the

SINGLE scheme: Since both the SINGLE and SEQUENTIAL

schemes use the same uniform distribution, a new attempt to

insert an element after an unsuccessful previous attempt in the

SEQUENTIAL scheme is equivalent to creating a new element

in the SINGLE scheme and then trying to insert it. In other

words, the number of elements successfully inserted by the

SEQUENTIAL scheme after considering n elements and using

a total of a · n bucket accesses is the same as the number

of elements successfully inserted by the SINGLE scheme after

considering a · n elements.

Theorem 4: Consider the SEQUENTIAL balancing scheme

with m buckets and n elements, and use the notations

of k0, p0, e0 and P from Theorem 1. The SEQUENTIAL

scheme solves the OPTIMAL ACCESS-CONSTRAINED BAL-

ANCING PROBLEM whenever it satisfies the three following

conditions:

(i) h = k0;

(ii) all a · n memory accesses are exhausted before or imme-

diately after trying to insert the n-th element;

(iii) p is the solution of the following fixed-point equation:
e−p·a·r

(1−p)h
−

e−a·r

(1−p)h

∑h−1
i=0

(a·r·(1−p))i

i!
= P (k0) .

Moreover, the optimality region is given by the overflow list

of size γ0 · n that results in exhausting all a · n memory

immediately after trying to insert the n-th element.

VII. THE MULTI-LEVEL HASH TABLE (MHT) BALANCING

SCHEME

The multi-level hash table (MHT) balancing scheme concep-

tually consists of d separate subtables T1, . . . , Td, where Ti has

αi · n buckets, and d associated hash functions H1, . . . , Hd,

defined such that Hi never returns values of bucket indices

outside Ti.

Using the MHT scheme, element x is placed in the smallest

i that satisfies one of the following two conditions: (i) the

bucket Hi(x) stores less than h elements, or, (ii) the bucket

Hi(x) stores exactly h elements, and element x is then inserted

with probability p. If the insertion algorithm fails to store

the element in all the d tables, x is placed in the overflow

list. Since that smallest i with available space is used, the

bucket accesses for each element x are sequential, starting

from H1(x) until a place is found or all d hash functions are

used (and the element is stored in the overflow list).

We skip to the optimality theorem of the MHT scheme.

Theorem 5: Consider an 〈a, d, r〉 MHT balancing scheme in

which each subtable Tj has αj ·m buckets, with
∑

αj = 1, and

use the notations of k0, p0, e0 and P from Theorem 1. Further,

let p (a) denote the overflow fraction of the SINGLE scheme

with a · n elements. Then, the 〈a, d, r〉 MHT scheme solves

the OPTIMAL ACCESS-CONSTRAINED BALANCING PROBLEM

whenever it satisfies the following four conditions:

(i) h = k0;

(ii) all a · n memory accesses are exhausted before or imme-

diately after trying to insert the n-th element;

(iii) p is the solution of the following fixed-point equation:
e−p·a·r

(1−p)h
−

e−a·r

(1−p)h

∑h−1
i=0

(a·r·(1−p))i

i!
= P (k0) ;

(iv) the subtable sizes αj ·m follow a geometric decrease of

factor p(a): αj =
(

1−p(a)

1−p(a)d

)

p (a)j−1 .

Moreover, the optimality region is given by the overflow list

of size γ · n that results in exhausting all a · n memory

accesses immediately after trying to insert the n-th element.

Furthermore, if all four conditions are met then all buckets

have an identical occupancy distribution.

VIII. COMPARATIVE EVALUATION AND ANALYSIS

Fig. 3(a) shows the optimality region of SEQUENTIAL and

MHT with element-per-bucket ratio r = 8, and d = 3 hash

functions. For each value of the average number of bucket ac-

cesses a, it shows the minimum value of the overflow fraction

γ that suffices to solve the OPTIMAL ACCESS-CONSTRAINED

BALANCING PROBLEM. For instance, we can see that for

a ≈ 1.1, SEQUENTIAL achieves optimality for an overflow

fraction equal to or larger than approximately 1%. In addition,

Fig. 3(b) shows the optimality region of SEQUENTIAL and

MHT with a = 1.2 and d = 3 for different values of r. We

can see that MHT scales better to higher loads.

IX. ANALYSIS OF THE BALANCED BLOOM FILTER

Blocked Bloom Filters [4], [5] form the first attempt to

design an access-efficient Bloom Filter. They constrain the

k hashed bits to be located in the same memory block, thus

causing a single memory access. The Blocked Bloom Filter

mechanism can be modeled using the SINGLE scheme with

no overflow list (γ = 0) and with a cost function φ, where

φ (i) expresses the false positive rate incurred to an element in

a given memory block given that i elements are hashed to this

memory block. More precisely, φ (i) =
(

1−
(

1− 1
B

)ki
)B

≈

1 1.05 1.1 1.15 1.2
0

0.01

0.02

0.03

a

γ

SEQUENTIAL

MHT

(a) Fixed load r = 8; variable average memory
accesses rate a

5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

r

γ

SEQUENTIAL

MHT

(b) Fixed average memory accesses rate a =
1.2; variable load r

Fig. 3. The overflow fraction γ induced by applying the SEQUENTIAL and
MHT schemes with worst-case memory accesses rate d = 3.

10 15 20 25 30 35 40

−8

−6

−4

−2

0

bits−per−element

lo
g

1
0
 (

F
P

R
)

standard (a ≈ k)

blocked (a=1, γ = 0)

SINGLE (a=1, γ ≈ 0.005)

MHT (a=1.2, γ ≈ 0.005)

Fig. 4. False positive rates of different Bloom Filter schemes with memory
block size of B = 256 bits and variable load r. SINGLE and MHT use overflow
fraction γ ≈ 0.5%.

(

1− e−
ki
B

)k

, where B is the size in bits of the memory block

and k is the number of hash functions used. However, although

the SINGLE scheme is optimal, its average number of memory

accesses is a = 1, thus it achieves poor balancing of the

elements resulting in a high false positive rate. In this section

we suggest to use our optimal online schemes to achieve a

better balancing between the memory blocks, and therefore, a

better false positive rate.

Assuming memory blocks of size B bits and bits-per-

element ratio β, the number of elements per bucket r is

B/β. Using the optimal online balancing schemes described

above to implement a Balanced Bloom Filter requires saving

b = ⌈log2 (k0 + 2)⌉ bits in every memory block to count

the elements hashed into each one. Thus, we get φ (i) =
(

1− e−
ki

B−b

)k

.

In the standard Bloom Filter, the optimal false positive

rate is achieved when using k = r · ln 2 hash functions [2].

Although this may not be the best choice in our settings, we

will use the same k for simplicity. Then, by further taking

into consideration the distribution of the number of memory

block accesses upon a query, the overall false positive rate can

be computed.

Fig. 4 compares the false positive rate for different values

of bits-per-element ratios with memory block size B = 256.

The MHT balancing scheme has a = 1.2 and d = 3. Thus, by

Theorems 1 and 5, we get that the overflow list size needed is

γ ≈ 0.5%. For comparison, Fig. 4 presents the performance

of both the SINGLE balancing scheme with the same overflow

list size and the Blocked Bloom Filter, which is equivalent to

the SINGLE scheme with no overflow list.

Because of the usage of the small overflow list, the SIN-

GLE balancing scheme performs only slightly better than

the Blocked Bloom Filter scheme. For low values of bits-

per-element ratio, the MHT scheme performs worse. This is

due to the need to check multiple memory blocks (up to d)

on a query operation. However, demonstrating the power in

balancing, for larger values of bits-per-element ratios, the MHT

performs better by up to two orders of magnitude, and only

one order of magnitude worse than the standard Bloom Filter,

which uses an access-inefficient scheme with a ≈ k accesses.

For example, for a bit-per-element ratio of 24, k = 17
hash functions are used, introducing up to 17 memory-read

operations in the standard Bloom Filter, which can clearly

present memory-throughput and power-consumption issues.

X. RELATED WORK

In the Introduction, we surveyed the relevant work related to

Bloom Filters. The balancing problem was also extensively in-

vestigated in the last decades under various forms [19]. Prime

examples include task balancing between many machines [20],

item distribution over several locations [21], bandwidth allo-

cation in communication channels [19] or within switches and

routers [22], and hash-based data structures [23].

Our paper is related to the sequential static multiple-choice

balls-and-bins problem described above. This model was first

considered in [6], and has had a large impact on modern

algorithms and data structures (see surveys in [17], [24]).

Note that most papers considered the maximum load of the

system, while our paper considers the entire load distribution

(including the maximum load).

Access-constrained hash-schemes were also considered

in [13], which, however, did not consider a cost minimization

problem and cannot deal with infinite-size bins.

Finally, we note that concurrently, another work has also

proposed to balance the elements in the context of Bloom

Filters [25]. However, beyond the mere balancing approach,

we further provide a theoretical framework for the general

problem of balancing the elements subject to a given access

budget.

XI. CONCLUSION

In this paper we presented an access-efficient variant of

Bloom Filters, called the Balanced Bloom Filter. In this

variant, each element is first assigned to a memory block,

where a local Bloom Filter is maintained. Our basic ap-

proach was two-folded. First, we proposed to maintain load-

balancing schemes: a simple approach (using only a single

hash function), a sequential approach, and a mutli-level hash-

table approach. And second, we proposed to use an overflow

list that can store elements that are hashed to overloaded

buckets.

To study this problem, we presented an access-constrained

balancing problem and showed that, for some specific param-

eters, our proposed load-balancing schemes are optimal.

ACKNOWLEDGMENTS

The work was partly supported by the European Research

Council Starting Grant n◦210389, the European Research

Council Starting Grant n◦259085, the Alon Fellowship, the

ATS-WD Career Development Chair, and the Loewengart

Research Fund.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” COMMUN. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[3] S. Tarkoma, C. Rothenberg, and E. Lagerspetz, “Theory and practice of
Bloom filters for distributed systems,” Commun. Surveys Tuts., vol. PP,
no. 99, pp. 1 –25, 2011.

[4] F. Putze, P. Sanders, and J. Singler, “Cache-,hash- and space-efficient
Bloom Filters,” in Workshop on Exp. Algorithms, 2007, pp. 108–121.

[5] Y. Qiao, T. Li, and S. Chen, “One memory access Bloom Filters and
their generalization.” in IEEE Infocom, 2011, pp. 1745–1753.

[6] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” in ACM STOC, 1994, pp. 593–602.

[7] N. L. Johnson and S. Kotz, Urn models and their application: an

approach to modern discrete probability theory. Wiley NY, 1977.
[8] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:

Cuckoo hashing with a stash,” in ESA, 2008, pp. 611–622.
[9] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,

“Bloom filters via d-left hashing and dynamic bit reassignment,” in IEEE

Allerton, 2006.
[10] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment

counting Bloom filter,” in IEEE Infocom, 2012.
[11] O. Rottenstreich and I. Keslassy, “The Bloom paradox: When not to use

a Bloom filter?” in IEEE Infocom, 2012.
[12] Y. Kanizo, D. Hay, and I. Keslassy, “Access-efficient balanced Bloom

Filters,” Comnet, Technion, Israel, Technical Report TR11-07, 2011.
[Online]. Available: http://comnet.technion.ac.il/∼isaac/papers.html

[13] ——, “Optimal fast hashing,” in IEEE Infocom, 2009, pp. 2500–2508.
[14] B. Vöcking and M. Mitzenmacher, “The asymptotics of selecting the

shortest of two, improved,” in Analytic Methods in Applied Probability,
2002, pp. 165–176.

[15] B. Vöcking, “How asymmetry helps load balancing,” in IEEE FOCS,
1999, pp. 131–141.

[16] A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing
schemes for hardware,” in IEEE Infocom, 2008, pp. 565–573.

[17] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” in Handbook of

Randomized Computing, 2000, pp. 255–312.
[18] Y. Kanizo, D. Hay, and I. Keslassy, “Hash tables with finite buckets are

less resistant to deletions,” in IEEE Allerton, 2010, pp. 678–685.
[19] Y. Azar, “On-line load balancing,” Theoretical Computer Science, pp.

218–225, 1992.
[20] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “On-line load

balancing with applications to machine scheduling and virtual circuit
routing,” in ACM STOC, 1993, pp. 623–631.

[21] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load balancing in dynamic structured P2P systems,” in IEEE Infocom,
2004.

[22] I. Keslassy, “The load-balanced router,” Ph.D. dissertation, Stanford
Univ., 2004.

[23] G. H. Gonnet, “Expected length of the longest probe sequence in hash
code searching,” J. ACM, vol. 28, no. 2, pp. 289–304, 1981.

[24] A. Kirsch, M. Mitzenmacher, and G. Varghese., “Hash-based techniques
for high-speed packet processing,” in Algorithms for Next Generation

Networks. Springer London, 2010, ch. 9, pp. 181–218.
[25] E. Krimer and M. Erez, “The power of 1 + α for memory-efficient

Bloom filters,” Internet Mathematics, vol. 7, no. 1, pp. 28 – 44, 2011.

