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Abstract—In software-defined networks (SDNs), the network
controller first formulates abstract network-wide policies, and
then implements them in the forwarding tables of network
switches. However, fast SDN tables often cannot scale beyond
a few hundred entries. This is because they typically include
wildcards, and therefore are implemented using either expensive
and power-hungry TCAMs, or complex and slow data structures.

This paper presents the Palette distribution framework for
decomposing large SDN tables into small ones and then dis-
tributing them across the network, while preserving the overall
SDN policy semantics. Palette helps balance the sizes of the tables
across the network, as well as reduce the total number of entries
by sharing resources among different connections. It copes with
two NP-hard optimization problems: Decomposing a large SDN
table into equivalent subtables, anddistributing the subtables such
that each connection traverses each type of subtable at least once.
To implement the Palette distribution framework, we introduce
graph-theoretical formulations and algorithms, and show that
they achieve close-to-optimal results in practice.

I. I NTRODUCTION

A. Background

Software-defined networking(SDN) in general, and Open-
Flow [1], [2] in particular, provide an abstraction of network
devices and operations. This abstraction eases the development
of new network protocols and policies. These protocols are im-
plemented through the networkcontroller, a single centralized
device with a global view of the entire network. The network
controller can be seen as a compiler that translates the abstract
policies provided by network designers into specific rules in
the table of each network switch.

Previous works typically assumed that the table of each
switch can hold an infinite number of rules, which makes the
compiler easy to design. In practice, however, this assumption
does not hold, and the switch table sizes can become a
significant bottleneck to scaling SDN networks. We note that
many of these tables are implemented using ternary content-
addressable memory (TCAM), which is extremely power-
hungry and therefore of limited size. Typical implementations
of OpenFlow, for example, limit the number of entries in
each such table to only 750 [3], while handling about 100,000
concurrent flows.

This paper introduces the Palette framework for distributing
these rules into a network of heterogeneous switches with
tables of limited size, while preserving the semantics of the
SDN policy. The Palette distribution framework is generic
in the sense that it does not rely on the exact meaning of
the rules, as long as the rules do not determine the routing
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Fig. 1. (a) A common setting in which tables are installed at thenetwork
ingress nodes; (b) The result of applying Palette. Tables are decomposed into
smaller subtables of different types (a.k.a. colors), whichare then distributed
across the network. A packet along each path meets each type ofsubtable at
least once.

of the packet. More specifically, the controller application
should only specify whether the policy is routing/forwarding-
agnostic or not, and should not deal with the implementation
complexity of the distribution across the network switches.
This is especially useful when the network topology changes,
or equipment is replaced.

B. The Palette Framework

We define an SDN policy as a collection of rules. Each
rule consists of a(pattern, action) pair, i.e. a pattern of
specific bits in the packet header along with an action to
take upon a pattern match (e.g. drop the packet or increment
a counter of some measurement). For aggregation purposes,
don’t-care bits, denoted by “*”, are allowed in the pattern.
Therefore, a given packet header may match more than one
rule, and in that case an action is taken according to the
highest-priority rule. Typically, the SDN tables evolve over
time (that is, new rules are added and some rules are deleted).
In addition, occasionally a switch can send notifications (e.g.,
measurements taken in one of its built-in counters) to the
controller.



Palette takes advantage of the fact that the controller has
a global view of the network, and therefore, knows the paths
taken by all packets. This allows us to share resources among
different paths in an efficient way, by using the same rules for
different paths in any common switch.

Fig. 1 illustrates our approach in a common setting used
for access control. Access control consists of determining
whether a given packet is permitted in the network or should
be dropped. It is usually made by a switch, a router, or
a designated Network Intrusion Detection/Prevention System
(NIDS/NIPS) middleboxat the edge of the network. Specif-
ically, as illustrated in Fig. 1(a), some access control is
performed on all ingress nodes of the network. In an SDN
setting, this typically translates into installing a tablewith all
access control rules in all ingress nodes. However, as shown
in Fig. 1(b), using our Palette framework, the rules can be
distributed across the network switches.

II. RELATED WORK

Software Defined Networking (SDN) has become an impor-
tant paradigm in contemporary networks. Its key concept lies
in the management of the entire network as a unified abstrac-
tion (e.g., in a network controller), and the remote controlof
the network devices (namely, its switches and routers) through
open protocols (such as OpenFlow) [4]. In recent years, SDN
technology has been widely deployed in real-life large-scale
networks, e.g. Google’s G-scale network [5]. Switches and
routers that support SDN/OpenFlow are now offered by a large
number of vendors (e.g., [3], [6], [7]).

One of the major challenges in SDN is to develop a
programming language for its software development. On one
hand, this programming language should be sufficiently flex-
ible and rich to allow new network applications, but on the
other hand, it should be simple and modular to reduce devel-
opment and debugging times. Frenetic [8] is a prime example
of such a network programming language that gives high-
level abstractions to the network programmer. For example,
it allows systematic updates [9] and task composition [8].
Perhaps the most closely-related work to ours is the extension
of Frenetic to allow policy transformation of rules across
the networks [10]. The authors developed a complete and
sound set of axioms to allow semantically-preserving rule-
rewriting in a single switch or in a chain of switches. Our paper
complements this work by providing a specific algorithmic
framework in which such a rewriting system can work, and
also shows how to spread the resulting rules across the
network. An additional key aspect of our paper that can be use-
ful for Frenetic is our order-oblivious decomposition, which
facilitates the distribution of subtables across the network.

Another approach for distributing table rules across the
network is DIFANE [11]. In DIFANE, special switches (called
authority switches) are assigned non-overlapping flow ranges.
Then, ingress switches redirect packets to the corresponding
authority rule and cache the corresponding rule for future
packets of the same flow. Our approach avoids the manage-
ment and redirection overhead as well as duplications of the

rules to the ingress switches.
To split the workload between the switches, cSamp [12], a

generic framework for network measurement, monitors each
flow only in one of the network switches. It uses a hash
function with a certain distribution at each switch to determine
whether the current switch has to perform the measurement.
However, since the hash function is orthogonal to the monitor-
ing rules, each such router needs to store the entire monitoring
table, which we want to avoid in our approach.

III. O RDER-OBLIVIOUS TABLE DECOMPOSITION

This section analyzes two approaches to dividing a large
table intoc subtables: thePivot Bit Decomposition(PBD) and
the Cut-Based Decomposition(CBD).

A. Decomposition Rules

Before starting, note that we only divide rules that corre-
spond to policies which aremarked as safe to divide. The
rest of the rules remain in the corresponding sub-table, and
will be re-composed with the rules assigned to that table
after decomposition. There is a large body of work of how to
compose several policies in one table (e.g., using a Cartesian
product of the rules [13]).

Hence, we are left with an arbitrary table that is safe to
divide. We assume that this table must be able to match all
possible strings. For this, we distinguish betweendefault and
non-defaultrules. The default rule consists ofdon’t-carebits
only, and it uses a default blank action (e.g., apermitaction in
ACLs). The non-default rules are all other rules in the table.
Clearly, if a default rule exists in the original table, it may be
placed only at the end of the table. To follow our convention,
after the decomposition we add a default rule automaticallyto
each of the resulting tables.

The correctness of the decomposition implies that each
string that matches a non-default rule in the original table,
must match a non-default rule in exactly one of the subtables
(and the default rule in the other resulting tables). Moreover,
strings that match the default rule in the original table, must
also match the default rule in all subtables.

B. Pivot Bit Decomposition

The first method, calledPivot Bit Decomposition (PBD),
works by iteratively decomposing one table into two equivalent
tables, thus increasing the total number of tables by1.

This iterative decomposition is done by selecting onepivot
bit (equivalently, one column) in the table, and splitting the
rules into two sets: the first table holds all rules in which the
pivot bit is 0, while the second table holds all rules in which
the pivot bit is1. Rules in which the pivot bit is “don’t care”
(“*”) are rewritten as two complementary rules: one in which
the pivot bit is replaced by0 (and therefore, is part of the first
table) and another in which it is replaced by1 (and therefore,
is part of the second table).

Naturally, the efficiency of the decomposition depends on
the joint selection of the table and of the pivot bit at each
iteration. Our goal is to greedily minimize the maximum



0 1 2 3 4 5 6
ϕ1 * 0 1 0 * 0 0
ϕ2 0 * 1 * * * 0
ϕ3 * 1 * * 1 0 1
ϕ4 1 1 1 * 1 * *
ϕ5 1 1 * 0 * * *
ϕ6 1 0 0 1 0 1 *
ϕ7 * * * * * * *

Fig. 2. An example rule-set of an SDN table.

table size among all the small tables. Therefore, we always
decompose the largest table. The pivot bit is then selected to
minimize the size of the largest table among the two resulting
subtables.

Finally, note that if after the decomposition the maximum
table size is not reduced, we refrain from decomposing the
table and move to the next table. The process ends either when
we reachc tables, or when all possible decompositions do not
result in table size reduction.

Example 1. We demonstrate our decomposition using the
example table depicted in Fig. 2. Assume we want to divide the
table intoc = 2 partitions. We disregard the default rule (ϕ7),
and choose bit number 1 as the pivot bit. Ruleϕ2 has* in bit
1, and therefore it is duplicated to ruleϕ′

2 = 001***0 and
ϕ′′

2 = 011***0. After the division, the rulesϕ1, ϕ′

2, andϕ6

are assigned to the first sub-table, while the rulesϕ′′

2 , ϕ3, ϕ4,
and ϕ5 are assigned to the second sub-table. We also need
to add default ruleϕ7 to both of the resulting sub-tables, so
their final sizes would be 4 and 5, respectively.

In [14], we have shown the correctness of our decomposition
and the fact that it is order-oblivious.

We point out two main drawbacks in the basic PBD scheme.
First, the largest subtable may be asymptoticallyc times larger
than the largest subtable in the optimal decomposition, as we
show in [14]. Second, the basic PBD scheme divides the table
at each iteration so that the maximum size of the resulting
two subtable sizes is minimized. Therefore, the sizes of the
resulting two subtables after each iteration tend to be almost
equal. As a result, whenc is not a power of two, it is expected
that the partition sizes would beimbalanced.

To solve this problem, we generalize the PBD scheme in
the following way: Given the target number of subtablesc,
we first find the largest integerp such that2p < c. Then, we
find a pivot bit that attempts to divide the table such that the
ratio between the resulting table sizes will be2p:(c−2p). 1

We recursively use this generalization of PBD on each of the
two subtables, aiming to decompose the first subtable into2p

smaller subtables, and the second subtable intoc− 2p ones.

1For example, forc = 7, the goal is to have two tables, one holding
approximately 4/7 of the entries and the other 3/7. Thus the ratio between the
tables is 4:3, while the basic PBD scheme aims to achieve a ratio1:1 between
the tables.
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Fig. 3. The dependency graph and cut of the table in Fig. 2.

C. Cut-Based Decomposition

We now offer a second approach to decomposing the table,
calledcut-based decomposition(CBD). This decomposition is
based on representing the set of rules in adirecteddependency
graph.

As illustrated in Fig. 3, which shows the dependency graph
of the table in Fig. 2, the nodes in this graph represent the
rules. Moreover, there is an edge from nodeu to nodev if
and only if ruleu has higher priority than rulev, and there is
at least one key that matches both rules. Namely, the edges of
the graph representdependenciesbetween the rules. Our goal
is to decompose the graph, which corresponds to the original
table, into component subgraphs, which will correspond to
the resulting subtables, such that there are no edges between
the components. That is, no key matches rules in different
components.

First, since all rules match the default rule, and it is allowed
to match the default rule in all subtables, we omit the node
corresponding to this default rule in the graph.

Second, we assign a weight to each edge. The weight
corresponds to the cost ofbreakingthis edge: an edge can be
broken by changing the rules in such a way that no dependency
remains between the rules, and the semantic is preserved.

Specifically, letbui denote thei-th bit of nodeu. For any
nodev, define the following set of dependency bits:Cu,v =
{i | bvi = * andbui 6= *}. The weight of the edge between
node u and nodev, denoted byw(u, v), is |Cu,v|−1. The
weight w(u, v) corresponds to a possible way of resolving
the dependency betweenu andv by addingw(u, v) nodes to
the graph: for each biti in Cu,v, we can write a rule that is
identical tov, except thei-th bit that is replaced by1 − bui .
These rules do not have a dependency withu. In addition,
each key that matchesv in the original rule-set will match
at least one of these rules. Note that when removing a single
edge from the graph, we create a new graph: edges that touch
nodev in the original graph might be duplicated to the new
|Cu,v|−1 nodes; the weight of these duplicated edges can only
decrease.

Another operation that we also allow in this scheme is a
node expansion, that is, given a set oft * bits in some rule,
we replace the rule with2t new rules by replacing the* bits
with a binary enumeration of possible combinations of 0s and
1s. By definition, this operation does not change the semantics



 

  

 

 

 

 

e

p

ee

e

e

p

p

vv

v v

Fig. 4. Illustration of the model. NetworkG = 〈V,E〉 has vertex set
V = {v1, . . . , v4} for the switches, and an edge setE = {e1, . . . , e5} for
the links. There are three paths in the path setP = {p1, p2, p3}, and, for
example,S (p1) = {v1, v2} andL (p1) = {e1}.

of the original table. However, it reduces the connectivityof
the dependency graph, facilitating the graph partitioning.

Since graph partitioning is an NP-hard problem, we have
obtained approximate solution using the off-the shelf program
METIS [15], as further detailed in [14].

IV. T HE RAINBOW PATH COLORING PROBLEM

After showing how to decompose the initial table into
subtables, we now turn to showhow to spread the subtables
in the network.

We model the network as a directed graphG = 〈V,E〉 with
a vertex setV and an edge setE, whereV = {v1, . . . , vn}
represents the set ofn switches andE = {e1, . . . , em} the
set ofm links. Further, letP = {p1, . . . , pf} be the set of all
flow paths in the network.

Our basic problem is to maximize the number ofcolors
c, such that we can color each switch in one of these colors
(or with no color), subject to the constraint that each path
must contain allc colors. In [14], we have formally defined
the problem, and shown that it isNP-hard for general graphs.
Therefore, we now want to introduce a suboptimal iterative
GREEDY algorithm.

At each iteration, which corresponds to a new color,
GREEDY continuously picks uncolored nodes one by one, until
each path contains at least one of the picked nodes in this
iteration. In such a case, the nodes picked are colored with a
new color, and the algorithm continues to the next iteration.
If at some iteration, even after picking all uncolored nodes,
there is at least one path that does not contain any of the
picked nodes, then those nodes remain uncolored (⊥), and the
algorithm stops. Note that, in any case, the algorithm never
stops in the first iteration, that is, it always succeeds to color
the nodes using at least one color.

We next present two variants of this algorithm, which differ
in the way the nodes are selected at each iteration. In the first
variant, which we call1-GREEDY, at each choice, we pick the
nodev that maximizes the number of paths that containv but
do not contain the new color.1-GREEDY runs inO

(

n2 · |P |
)

time complexity.
The second variant,q-GREEDY, generalizes the1-GREEDY

algorithm by considering, at each step, a set of up toq nodes

(instead of a single node). It chooses the set of nodes that
maximizes the number of paths for which there is at least one
node in the set. Notice that the largerq is, the longer it takes
to run q-GREEDY, whose time complexity isO

(

nq+1 · |P |
)

.
The next example shows an execution of1-GREEDY and

an execution of2-GREEDY that differ in their outcome. This
demonstrates the tradeoffs in fixing the parameterq.

Example 2. Consider the example in Fig. 4. We first run1-
GREEDY. At the first iteration, nodesv1, v2, andv3 belong to
two paths; assume that1-GREEDY first picksv1 and colors it
in the first color. Then, in order to colorp3, it picks v2 and
colors it in the first color as well. Note that all nodes of the
first path p1 are now colored, implying that any additional
iteration will fail, resulting in a valid coloring of only one
color.

In contrast,q-GREEDY with q = 2 first picks nodesv2 and
v3, since all three paths traverse through either one of these
nodes. Then,v1 and v4 can be colored with an additional
color, resulting in a valid coloring with 2 colors.

Note that although the presented problem is NP-hard, we
are able to find the optimal solution for small instances of
the problem by using an algorithm based on dynamic pro-
gramming [14]. This algorithm, which might be applicable to
some real-life networks, is used in Section V as a baseline for
evaluating the performance of the1-GREEDY andq-GREEDY.
Specifically, our simulations show an average margin of error
within 2%.

V. EXPERIMENTAL RESULTS

We now turn to evaluating our algorithms. We first check
the decomposition algorithms (Section III) and then the table
distribution algorithms (Section IV).

A. Table Decomposition

We first consider the PBD and CBD algorithms for decom-
posing tables, as presented in Section III.

We define thequality of a table decomposition algorithm
as the ratio between the number of rules in the original table,
and the product of the largest resulting subtable size by the
number of subtablesc. The quality is therefore between 0 and
1, where higher quality values implies a better decomposition.
Specifically, a quality of 1 means that the largest subtable
size has exactly an ideal fraction1/c of the number of the
original rules. Note that this quality can only be used to
compare among different algorithms for the same value of
c. Furthermore, it is most likely that the quality is decreased
whenc is increased.

We compare PBD and CBD algorithms with abit groups
algorithm based on [16]. Through an exhaustive search, this
algorithm selects thelog2 c pivot bits that maximize the
quality. Thus, it only works for values ofc that are powers of
2.

Fig. 5 shows the quality of the three algorithms as the
numberc of partitions grows. For the simulations, we have
created 100 random logically-minimized rule-sets with 12 bits
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and 30 rules each. PBD slightly outperformsbit groups, except
when c = 2, where they perform similarly. CBD clearly
outperforms both over the entire range.

We have also evaluated in [14] PBD and CBD with the
twelve standard classification benchmark rule-sets of Class-
Bench [13], [18]. We find that the quality of our schemes
is greatly affected by the specific rule-set. Namely, CBD
outperforms PBD when its dependency graph is sparse (e.g.,
with an average degree of less than 3), while PBD is better
than CBD otherwise.

B. Table Distribution

To analyze the performance of our table distribution algo-
rithm, we have produced random instances in the following
manner: given a number of switchesn and a number of
pathsf , we add each switch to each path with probabilitypn
independently of the other switches or paths. In this section,
we study our algorithms on small networks, where we are able
to compute theoptimal valid coloring size.

Fig. 6 shows the number of colors found by the greedy
approach in terms of percentage of the optimal solution. The
parameters in this case aren = 7, f = 7 andpn = 5

7
, and we

ran the simulation 1000 times. Our results yield that, in these
cases, that the greedy approach finds a valid coloring whose
size exceeds (on average) 98% of the optimal solution.

VI. CONCLUSION

This paper proposed Palette, a framework to decompose and
distribute SDN tables across the network. Palette is especially
important as switch table sizes can become a bottleneck in

scaling SDNs. Moreover, it facilitates handling the heterogene-
ity of switches in the network and the changes of equipment.

We modeled the problem in a graph-theoretic manner, and
proposed several algorithms, both for decomposing one table
to semantically-equivalent subtables and for spreading these
subtables across the network. Our algorithms were evaluated
both under random and real-life instances.
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