Palette: Distributing Tables
In Software-Defined Networks

Yossi Kanizo David Hay Isaac Keslassy
Technion Hebrew University Technion
ykanizo@cs.technion.ac.il dhay@cs.huji.ac.il isaac@ee.technion.ac.il

Abstract—In software-defined networks (SDNs), the network
controller first formulates abstract network-wide policies, and o
then implements them in the forwarding tables of network : < .
switches. However, fast SDN tables often cannot scale beyond

a few hundred entries. This is because they typically include - — — ‘ )
wildcards, and therefore are implemented using either expensive b — /.

il

and power-hungry TCAMs, or complex and slow data structures.
This paper presents the Palette distribution framework for —
decomposing large SDN tables into small ones and then dis-
tributing them across the network, while preserving the overall
SDN policy semantics. Palette helps balance the sizes of the tables
across the network, as well as reduce the total number of entrge
by sharing resources among different connections. It copes with
two NP-hard optimization problems: Decomposing a large SDN
table into equivalent subtables, andlistributing the subtables such
that each connection traverses each type of subtable at least@n
To implement the Palette distribution framework, we introduce
graph-theoretical formulations and algorithms, and show that
they achieve close-to-optimal results in practice.

S Table decomposition:

I. INTRODUCTION

A. Background _ o _

Software-defined networkingDN) in general, and OpeN-incress nades; (5) The resu of applying Palete. Tableiacomposed into
Flow [1], [2] in particular, provide an abstraction of netilko smaller subtables of different types (a.k.a. colors), wkigh then distributed
devices and operations. This abstraction eases the devetp f‘ecg‘s)tszrfzg network. A packet along each path meets each typebtable at
of new network protocols and policies. These protocolsmare i '
plemented through the netwodontroller, a single centralized
device with a global view of the entire network. The networlf the packet. More specifically, the controller applicatio
controller can be seen as a compiler that translates theaabstshould only specify whether the policy is routing/forwarghi
policies provided by network designers into specific rules agnostic or not, and should not deal with the implementation
the table of each network switch. complexity of the distribution across the network switches

Previous works typically assumed that the table of eaqthis is especially useful when the network topology changes
switch can hold an infinite number of rules, which makes thg equipment is replaced.

compiler easy to design. In practice, however, this assiompt
does not hold, and the switch table sizes can becomeBa The Palette Framework
significant bottleneck to scaling SDN networks. We note that We define an SDN policy as a collection of rules. Each
many of these tables are implemented using ternary contemtte consists of a(pattern, action)pair, i.e. a pattern of
addressable memory (TCAM), which is extremely powespecific bits in the packet header along with an action to
hungry and therefore of limited size. Typical implemerttai take upon a pattern match (e.g. drop the packet or increment
of OpenFlow, for example, limit the number of entries ira counter of some measurement). For aggregation purposes,
each such table to only 750 [3], while handling about 100,0@n’'t-care bits, denoted by #”, are allowed in the pattern.
concurrent flows. Therefore, a given packet header may match more than one
This paper introduces the Palette framework for distribgti rule, and in that case an action is taken according to the
these rules into a network of heterogeneous switches witlghest-priority rule. Typically, the SDN tables evolveeov
tables of limited size, while preserving the semantics ef thime (that is, new rules are added and some rules are deleted)
SDN policy. The Palette distribution framework is generidn addition, occasionally a switch can send notificationg.(e
in the sense that it does not rely on the exact meaning measurements taken in one of its built-in counters) to the
the rules, as long as the rules do not determine the routiogntroller.



Palette takes advantage of the fact that the controller haes to the ingress switches.
a global view of the network, and therefore, knows the pathsTo split the workload between the switches, cSamp [12], a
taken by all packets. This allows us to share resources ama@neric framework for network measurement, monitors each
different paths in an efficient way, by using the same rules fow only in one of the network switches. It uses a hash
different paths in any common switch. function with a certain distribution at each switch to detire
Fig. 1 illustrates our approach in a common setting usathether the current switch has to perform the measurement.
for access control Access control consists of determiningHowever, since the hash function is orthogonal to the monito
whether a given packet is permitted in the network or shouidg rules, each such router needs to store the entire mimgtor
be dropped. It is usually made by a switch, a router, éable, which we want to avoid in our approach.
a designated Network Intrusion Detection/Prevention &yst
(NIDS/NIPS) middleboxat the edge of the netwarlSpecif- lll. ORDER-OBLIVIOUS TABLE DECOMPOSITION
ically, as illustrated in Fig. 1(a), some access control is This section analyzes two approaches to dividing a large
performed on all ingress nodes of the network. In an SDtdble intoc subtables: th@ivot Bit DecompositioffPBD) and
setting, this typically translates into installing a takléh all the Cut-Based DecompositiofCBD).
access control rules in all ingress nodes. However, as shown -
in Fig. 1(b), using our Palette framework, the rules can d& Decomposition Rules
distributed across the network switches. Before starting, note that we only divide rules that corre-
spond to policies which arenarked as safe to divideThe
rest of the rules remain in the corresponding sub-table, and
Software Defined Networking (SDN) has become an impowill be re-composed with the rules assigned to that table
tant paradigm in contemporary networks. Its key concept liafter decomposition. There is a large body of work of how to
in the management of the entire network as a unified abstraompose several policies in one table (e.g., using a Cartesi
tion (e.g., in a network controller), and the remote contol product of the rules [13]).
the network devices (namely, its switches and routersutiito  Hence, we are left with an arbitrary table that is safe to
open protocols (such as OpenFlow) [4]. In recent years, SiWide. We assume that this table must be able to match all
technology has been widely deployed in real-life largdescapossible strings. For this, we distinguish betwelefiaultand
networks, e.g. Google’s G-scale network [5]. Switches ambn-defaultrules. The default rule consists dbn't-care bits
routers that support SDN/OpenFlow are now offered by a largely, and it uses a default blank action (e.ggeamitaction in
number of vendors (e.g., [3], [6], [7])- ACLs). The non-default rules are all other rules in the table
One of the major challenges in SDN is to develop &learly, if a default rule exists in the original table, it ynbe
programming language for its software development. On opkaced only at the end of the table. To follow our convention,
hand, this programming language should be sufficiently fleafter the decomposition we add a default rule automatically
ible and rich to allow new network applications, but on theach of the resulting tables.
other hand, it should be simple and modular to reduce devel-The correctness of the decomposition implies that each
opment and debugging times. Frenetic [8] is a prime examp#&ing that matches a non-default rule in the original table
of such a network programming language that gives highiust match a non-default rule in exactly one of the subtables
level abstractions to the network programmer. For exampland the default rule in the other resulting tables). Moezpv
it allows systematic updates [9] and task composition [8$trings that match the default rule in the original table stmu
Perhaps the most closely-related work to ours is the exdansalso match the default rule in all subtables.
of Frenetic to allow policy transformation of rules across ) -
the networks [10]. The authors developed a complete aRd Pivot Bit Decomposition
sound set of axioms to allow semantically-preserving rule- The first method, calledPivot Bit Decomposition (PBD)
rewriting in a single switch or in a chain of switches. Our @ap works by iteratively decomposing one table into two equaul
complements this work by providing a specific algorithmitables, thus increasing the total number of tabled by
framework in which such a rewriting system can work, and This iterative decomposition is done by selecting pnet
also shows how to spread the resulting rules across thie (equivalently, one column) in the table, and splitting the
network. An additional key aspect of our paper that can be useales into two sets: the first table holds all rules in which th
ful for Frenetic is our order-oblivious decomposition, wti pivot bit is 0, while the second table holds all rules in which
facilitates the distribution of subtables across the ndtwo  the pivot bit is1. Rules in which the pivot bit is “don’t care”
Another approach for distributing table rules across thHg*") are rewritten as two complementary rules: one in which
network is DIFANE [11]. In DIFANE, special switches (calledthe pivot bit is replaced by (and therefore, is part of the first
authority switchesare assigned non-overlapping flow rangesable) and another in which it is replaced byand therefore,
Then, ingress switches redirect packets to the correspgndis part of the second table).
authority rule and cache the corresponding rule for future Naturally, the efficiency of the decomposition depends on
packets of the same flow. Our approach avoids the manatfee joint selection of the table and of the pivot bit at each
ment and redirection overhead as well as duplications of theration. Our goal is to greedily minimize the maximum

Il. RELATED WORK
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Fig. 2. An example rule-set of an SDN table.
Fig. 3. The dependency graph and cut of the table in Fig. 2.

table size among all the small tableEherefore, we always -
decompose the largest table. The pivot bit is then selectedG. Cut-Based Decomposition

minimize the size of the largest table among the two resultin \we now offer a second approach to decomposing the table,

subtables. calledcut-based decompositiq©BD). This decomposition is
Finally, note that if after the decomposition the maximurpased on representing the set of rules @iracteddependency

table size is not reduced, we refrain from decomposing tgeaph.

table and move to the next table. The process ends either wheps illustrated in Fig. 3, which shows the dependency graph

we reache tables, or when all possible decompositions do nef the table in Fig. 2, the nodes in this graph represent the

result in table size reduction. rules. Moreover, there is an edge from nadéo nodew if

and only if rulew has higher priority than rule, and there is

Example 1. We demonstrate our decomposition using thet least one key that matches both rules. Namely, the edges of

example table depicted in Fig. 2. Assume we want to divide the .
table intoc = 2 partitions. We disregard the default rule-), he graph represemtependenciebetween the rules. Our goal

and choose bit number 1 as the pivot bit. Rulehas in bit is to decompose the graph, which corresponds to the original

1, and therefore it is duplicated to rulg, — 0010 and table, |nt(_) component subgraphs, which will correspond to
" o , the resulting subtables, such that there are no edges betwee
¢y = 011x == 0. After the division, the rulesn, 5, and g

are assigned to the first sub-table, while the rules os, o, tcr;e ;gw:r(])tgents. That is, no key matches rules in different

and are assigned to the second sub-table. We also need_. . o
¥5 g irst, since all rules match the default rule, and it is addw

to add default rulep; to both of the resulting sub-tables, so . .
their final sizes would be 4 and 5, respectively. to match the default rule in all subtables, we omit the node

corresponding to this default rule in the graph.

In [14], we have shown the correctness of our decompositionSecond, we assign a weight to each edge. The weight
and the fact that it is order-oblivious. corresponds to the cost bfeakingthis edge: an edge can be

We point out two main drawbacks in the basic PBD schemi:oken by changing the rules in such a way that no dependency
First, the largest subtable may be asymptoticaliines larger remains between the rules, and the semantic is preserved.
than the largest subtable in the optimal decomposition, @s w Specifically, letbi" denote thei-th bit of nodew. For any
show in [14]. Second, the basic PBD scheme divides the tatede v, define the following set of dependency bits; , =
at each iteration so that the maximum size of the resultidg | b; = * andb # *}. The weight of the edge between
two subtable sizes is minimized. Therefore, the sizes of thede u and nodev, denoted byw(u,v), is |Cy,»|—1. The
resulting two subtables after each iteration tend to be simaveight w(u,v) corresponds to a possible way of resolving

equal. As a result, whenis not a power of two, it is expected the dependency betweenandv by addingw(u, v) nodes to
that the partition sizes would hmbalanced the graph: for each bit in C, ,,, we can write a rule that is

identical tov, except thei-th bit that is replaced by — b}'.
These rules do not have a dependency within addition,
each key that matches in the original rule-set will match

it least one of these rules. Note that when removing a single
edge from the graph, we create a new graph: edges that touch

We recursively use this generalization of PBD on each of tfi@dev in the o_riginal graph might be duplicated to the new
two subtables, aiming to decompose the first subtabledhto |Cw.v|—1 nodes; the weight of these duplicated edges can only

smaller subtables, and the second subtable dnt? ones. ~decrease. _ o _
Another operation that we also allow in this scheme is a

node expansigrthat is, given a set of * bits in some rule,
1For example, forc = 7, the goal is to have two tables, one holding,ye replace the rule witBt new rules by replacing the bits
approximately 4/7 of the entries and the other 3/7. Thus ttie between the with a binary enumeration of possible combinations of Os and

tables is 4:3, while the basic PBD scheme aims to achieve aldtibetween Y ) : )
the tables. 1s. By definition, this operation does not change the sec&nti

To solve this problem, we generalize the PBD scheme
the following way: Given the target number of subtabies
we first find the largest integer such that2? < ¢. Then, we
find a pivot bit that attempts to divide the table such that t
ratio between the resulting table sizes will be(c—27). 1



(instead of a single node). It chooses the set of nodes that
maximizes the number of paths for which there is at least one
node in the set. Notice that the larggrs, the longer it takes
to run ¢-GREEDY, whose time complexity i©) (n?** - |P)|).

The next example shows an execution IeGREEDY and
an execution oR-GREEDY that differ in their outcome. This
demonstrates the tradeoffs in fixing the parameter

Example 2. Consider the example in Fig. 4. We first rin
GREEDY. At the first iteration, nodes;, v, andvs belong to
two paths; assume thatGREEDY first picksv; and colors it
Fig. 4. lllustration of the model. Networki = (V, E) has vertex set in the first color. Then, in order to colops, it picks v, and
V= {v1,...,v4} for the switches, and an edge d6t= {e1,...,es5} for  colors it in the first color as well. Note that all nodes of the
the links. There are three paths in the path Bet= {p1,p2,p3}, and, for first th | d i IVi that dditi |
example,S (p1) = {vi,v2} and L (p1) = {e1 }. path p; are now colored, Implying that any aaditiona
iteration will fail, resulting in a valid coloring of only om
color.
of the original table. However, it reduces the connectidity  In contrast,q-GREEDY with ¢ = 2 first picks nodes, and
the dependency graph, facilitating the graph partitioning v, since all three paths traverse through either one of these
Since graph partitioning is an NP-hard problem, we havédes. Thenyp; and v; can be colored with an additional
obtained approximate solution using the off-the shelf pray color, resulting in a valid coloring with 2 colors.

METIS [15], as further detailed in [14]. )
Note that although the presented problem is NP-hard, we
IV. THE RAINBOW PATH COLORING PROBLEM are able to find the optimal solution for small instances of
After showing how to decompose the initial table intdhe problem by using an algorithm based on dynamic pro-
subtables, we now turn to shdmow to spread the subtablesgramming [14]. This algorithm, which might be applicable to

in the network some real-life networks, is used in Section V as a baseline fo
We model the network as a directed gra@gh= (V, E) with  evaluating the performance of tieGREEDY and g-GREEDY.

a vertex sefl” and an edge sel, whereV = {vy,...,v,} Specifically, our simulations show an average margin ofrerro

represents the set of switches andE = {ey,...,e,,} the within 2%.

set ofm links. Further, letP = {p;,...,ps} be the set of all
flow paths in the network.

Our basic problem is to maximize the number aaflors We now turn to evaluating our algorithms. We first check
¢, such that we can color each switch in one of these coldie decomposition algorithms (Section Ill) and then thdetab
(or with no color), subject to the constraint that each pattistribution algorithms (Section V).
must contain allc colors. In [14], we have formally defined
the problem, and shown that it iéP-hardfor general graphs.
Therefore, we now want to introduce a suboptimal iterative We first consider the PBD and CBD algorithms for decom-
GREEDY algorithm. posing tables, as presented in Section IllI.

At each iteration, which corresponds to a new color, We define thequality of a table decomposition algorithm
GREEDY continuously picks uncolored nodes one by one, untils the ratio between the number of rules in the original table
each path contains at least one of the picked nodes in thigd the product of the largest resulting subtable size by the
iteration. In such a case, the nodes picked are colored witthamber of subtables. The quality is therefore between 0 and
new color, and the algorithm continues to the next iteratiod, where higher quality values implies a better decompmsiti
If at some iteration, even after picking all uncolored nqdeSpecifically, a quality of 1 means that the largest subtable
there is at least one path that does not contain any of tdige has exactly an ideal fractiaryc of the number of the
picked nodes, then those nodes remain uncolatggddnd the original rules. Note that this quality can only be used to
algorithm stops. Note that, in any case, the algorithm nevedmpare among different algorithms for the same value of
stops in the first iteration, that is, it always succeeds forco c. Furthermore, it is most likely that the quality is decrehse
the nodes using at least one color. whenc is increased.

We next present two variants of this algorithm, which differ We compare PBD and CBD algorithms withbét groups
in the way the nodes are selected at each iteration. In the fedgorithm based on [16]. Through an exhaustive search, this
variant, which we call.-GREEDY, at each choice, we pick thealgorithm selects thdog, ¢ pivot bits that maximize the
nodev that maximizes the number of paths that contaiout quality. Thus, it only works for values of that are powers of
do not contain the new colot-GREEDY runs inO (n? - |P|) 2.
time complexity. Fig. 5 shows the quality of the three algorithms as the

The second varian-GREEDY, generalizes thé-GREEDY numberc of partitions grows. For the simulations, we have
algorithm by considering, at each step, a set of up tmdes created 100 random logically-minimized rule-sets with #2 b

V. EXPERIMENTAL RESULTS

A. Table Decomposition
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Fig. 5. Evaluation of the quality metric of the PBD, CBD, andam#iterative
algorithm that selects all pivot bits at once [16], [17]. Tihput is a synthetic

scaling SDNs. Moreover, it facilitates handling the hegere-

ity of switches in the network and the changes of equipment.
We modeled the problem in a graph-theoretic manner, and

proposed several algorithms, both for decomposing one tabl

to semantically-equivalent subtables and for spreadiegeh

subtables across the network. Our algorithms were evaluate

both under random and real-life instances.
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the 1-GREEDY, 2-GREEDY, and3-GREEDY algorithms. Parameters ane= 7,
f="T7andp, = 3.

K]
(4]

(5]

and 30 rules each. PBD slightly outperfortnsgroups except
when ¢ = 2, where they perform similarly. CBD clearly
outperforms both over the entire range.

We have also evaluated in [14] PBD and CBD with the
twelve standard classification benchmark rule-sets of £<lasé]
Bench [13], [18]. We find that the quality of our schemes7]
is greatly affected by the specific rule-set. Namely, CBD[
outperforms PBD when its dependency graph is sparse (e.¢gl
with an average degree of less than 3), while PBD is better
than CBD otherwise. [9]

B. Table Distribution

To analyze the performance of our table distribution algc[>—
rithm, we have produced random instances in the followirl!!
manner: given a number of switches and a number of
pathsf, we add each switch to each path with probability [12]
independently of the other switches or paths. In this sectio
we study our algorithms on small networks, where we are ahig,
to compute theoptimal valid coloring size.

Fig. 6 shows the number of colors found by the greedy’]
approach in terms of percentage of the optimal solution. The
parameters in this case ate="7, f =7 andp,, = % and we [15]
ran the simulation 1000 times. Our results yield that, irs¢éhe
cases, that the greedy approach finds a valid coloring whgsg
size exceeds (on average) 98% of the optimal solution.

VI. CONCLUSION (17
This paper proposed Palette, a framework to decompose PALY

distribute SDN tables across the network. Palette is ealhgci

important as switch table sizes can become a bottleneck in

Bremler-Barr for kindly accepting to run several simulago
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