
Leveraging Traffic Repetitions for High-Speed Deep
Packet Inspection

Anat Bremler-Barr ⇤, Shimrit Tzur David ⇤, Yotam Harchol †, David Hay †

⇤School of Computer Science, Interdisciplinary Center, Herzliya, Israel
bremler@idc.ac.il, shimritd@cs.huji.ac.il

†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
{yotamhc,dhay}@cs.huji.ac.il

Abstract—Deep Packet Inspection (DPI) plays a major role
in contemporary networks. Specifically, in datacenters of content
providers, the scanned data may be highly repetitive. Most DPI
engines are based on identifying signatures in the packet payload.
This pattern matching process is expensive both in memory and
CPU resources, and thus, often becomes the bottleneck of the
entire application.

In this paper we show how DPI can be accelerated by lever-
aging repetitions in the inspected traffic. Our new mechanism
makes use of these repetitions to allow the repeated data to be
skipped rather than scanned again. The mechanism consists of
a slow path, in which frequently repeated strings are identified
and stored in a dictionary, along with some succinct information
for accelerating the DPI process, and a data path, where the
traffic is scanned byte by byte but strings from the dictionary, if
encountered, are skipped. Upon skipping, the data path recovers
to the state it would have been in had the scanning continued
byte by byte.

Our solution achieves a significant performance boost, es-
pecially when data is from the same content source (e.g., the
same website). Our experiments show that for such cases, our
solution achieves a throughput gain of 1.25�2.5 times the original
throughput, when implemented in software.

I. INTRODUCTION

Content providers, such as Internet Service Providers
(ISPs), Google, and Netflix maintain datacenters to host their
content, or their customers’ content. Usually, such providers
also maintain monitoring appliances such as network intrusion
detection systems (NIDS), content filtering (such as parental
control services), spam filtering, network analytics, and more.
All these appliances scan the payload of packets in a process
known as Deep Packet Inspection (DPI). In addition, providers
sometimes use Layer 7 routing and Layer 7 load-balancers,
which rely as well on scanning the application layer header
and work using similar techniques.

Perhaps the most important technique used in today’s DPI
engines is signature matching, in which the payload of the
packet is compared against a predetermined set of patterns
(with exact strings or regular expressions). Signature matching
has been a well-established research topic since the ’70s, and
usually involves a memoryless scanning of the packets. For
example, the widely-used Aho-Corasick algorithm builds a
Deterministic Finite Automaton (DFA) to represent the set
of patterns; each byte of the packet causes a transition in
that DFA, and a pattern is found if the DFA transitions to
an accepting state in the automaton. When scanning a byte

using the Aho-Corasick algorithm, only the current state of
the automaton is used. Informally speaking, this implies that
no information from other packets, or different fragments of
the same packet, is used to enhance the scanning process. Even
if the same packet arrives at the DPI engine many times, the
engine will always scan it from scratch.

A closer look at Internet traffic, and specifically HTTP
traffic, clearly indicates many repetitions. Such repetitions can
be classified either as full repetitions, in which the entire object
(e.g., image, stylesheet, javascript) appears several times, or
partial repetitions, in which only shorter fragments (e.g.,
shared HTML code) appear in many packets or sessions.

In content providers’ networks, most of the data is highly
similar and often it is simply the same files, or files with
minimal modifications, that are being sent over the network.
Moreover, recent trends in content providers’ networks include
Software Defined Networking (SDN), where routing is based
on multiple, arbitrary header fields. Several suggestions to
make SDNs aware of application layer information have been
made [1], and thus we envision that DPI will be the focus
of greater attention as a new bottleneck for such networks.
Another interesting direction of content providers’ networks
is Network Function Virtualization (NFV), where network
functions such as monitoring appliances are virtualized for
higher flexibility and scalability. In some cases, these virtual
appliances scan traffic from a closed set of servers or even a
single server that serves several virtual machines. Thus, the
similarity between pieces of data to be scanned is expected to
increase. Moreover, using SDN, traffic can be made to flow
so that similar traffic (from similar sources) flows to the same
monitoring appliances.

Our paper presents a mechanism that uses such repetitions
efficiently in order to accelerate the signature matching com-
ponent of the DPI engine. Our mechanism is based solely on
modifications to the signature matching algorithm, and thus
does not involve any change to the inspected traffic or require
any cooperation from any other component in the network.
Conceptually, it is divided to two parts: a slow path that
samples the traffic and creates a dictionary with the fixed-
length popular strings (which we call grams), and a data path
that scans the traffic byte by byte and checks the dictionary
for matches; if a gram is found in the dictionary, the data path
skips the gram and adjusts its state according to an information
saved along this gram.

Our solution is based on the DFA-based Aho-Corasick

algorithm, but it can also be merged with other existing
techniques. In the slow path, we save the state of the automaton
after scanning the saved gram from the initial automaton’s
state. In the data path, we show that after skipping a gram, one
should continue scanning from that saved state.1 To accelerate
the data path operations, we use a Bloom filter that represents
the set of grams in the dictionary. Since Bloom filters are
compact data structures, they reside in fast memory, thus
reducing the overhead presented by our mechanism when there
is no match in the dictionary.

We further note that our mechanism is generic and can be
implemented either in software or in hardware. In software, the
data path is implemented as a thread, while the slow path is
implemented as another thread, possibly with lower priority. In
a typical multi-core, multi-threaded environment, our solution
uses a single slow-path thread that gets packet samples and
calculates dictionaries, and many data-path threads (possibly
on many cores), each inspecting different packets (or dif-
ferent connections). Since the slow path runs periodically,
the marginal loss of computation power is very low, and
is also adjustable. Moreover, if repeated strings are known,
one can use them as a dictionary without rebuilding it. In
hardware, on the other hand, we can parallel the operation
in finer granularity (for example, checking the Bloom filter in
parallel with scanning a byte), for a significant performance
boost. Section V-A analyzes our software implementation
and our proposed hardware implementation. In the software
implementation, the experimental results match the predictions
of the model. We analyze the real weight of each parameter in
the model and apply these weights to the proposed hardware
model to evaluate the benefits of a hardware implementation.

One of the greatest challenges in implementing our mecha-
nism is deciding which grams should be saved in the dictionary
at a given time. We chose to implement a variation of the
algorithm suggested in [2], which is able to efficiently find
the most popular strings of variable length. We then chop the
strings to fixed-length grams and store those in the dictionary,
as fixed-length grams are easier to handle in the data path.
Naturally, the performance boost gained by our mechanism
depends on the inspected traffic. We provide analysis and
experimental results for several DPI use-cases that describe
real-life situations, and discuss the potential speedup of our
mechanism when scanning such traffic.

Our solution targets the exact string matching problem as
it is an essential building block of most contemporary DPI
engines. In many monitoring tools (such as Snort [3]), even
if most patterns are regular expressions, string matching is
performed first and constitutes most of the work performed by
the engine. Specifically, Snort extracts the strings that appeared
in the regular expressions and performs string matching over
these extracted strings; only if all strings extracted from a
specific regular expression are matched, Snort invokes regular
expression engine (e.g., PCRE [4]) to check that expression.
This is a common procedure since regular expression engines
work inefficiently on a large number of expressions.

1Small modifications, explained in Section III-B, are required to avoid
missing patterns in these skips.

II. RELATED WORK

Deep packet inspection (DPI) relies on a string matching
algorithm, which is an essential building block for numerous
other applications as well. Therefore, it has been extensively
studied [5]. Some of the fundamental algorithms are Boyer-
Moore [6], Aho-Corasick [7] and Wu-Manber [8]. The seminal
algorithm of Aho-Corasick (AC) is the de-facto standard for
pattern matching in bump-in-the-wire. The AC algorithm con-
structs a Deterministic Finite Automaton (DFA) for detecting
all occurrences of a given set of patterns by processing the
input in a single pass. The input is inspected byte by byte. We
describe the algorithm in detail in section III-A. The string
matching algorithm is often a bottle-neck of the system.

There is extensive research on accelerating the DPI pro-
cess, both using hardware and software implementations. The
hardware implementations [9]–[15] usually use some special-
purpose hardware such as FPGA or a CAM/TCAM. These
solutions are usually hard to reprogram, and it is usually
complicated to update their signature set. They also tie the
engine to a specific type of hardware, which might make it
difficult to embed these solutions. Software implementations
[16]–[22], while easy to apply, reprogram, and update, have
obvious performance disadvantage of being implemented on a
general purpose system. All of these works are orthogonal to
our work in the sense that all of them can be applied on top
of our engine to further accelerate the DPI process.

In this paper we leverage the many repetitions in web
traffic to accelerate the DPI process. Another approach that
also leverages traffic repetitions is deduplication. Network
data deduplication is used to reduce the number of bytes
that must be transferred between endpoints, thus reducing the
required bandwidth [23]–[32]. In these works, the authors find
a redundancy of 35%-45% in general traffic and up to 90%
redundancy in web traffic, depending on the type of the traffic.

We present an algorithm that accelerates the DPI process
by leveraging the repetitions in plain, non-deduplicated traffic.
Leveraging repetitions in DPI engines is entirely different from
deduplication, which requires extensions and modifications
on both the server and client sides, while a DPI engine
scans traffic on the route between them and cannot force
deduplication or assume it is used. Furthermore, leveraging
repetition in DPI requires finding the repetitions on the fly,
and repetitions can be short. Note that these requirements do
not exist for deduplication solutions.

The work presented in [33] provides a limited solution to
accelerate the DPI process using the Aho-Corasick algorithm.
In this work, a repetition is defined as a repeated string that also
starts at the same state in the DFA. Thus, this approach only
works when scanning several copies of the exact same string,
or when the same strings are stored over and over along with
different starting states. However, not only can this approach
can miss a repeated string, it only checks sequential strings of
fixed length. The solution is thus limited and can only take
advantage of repetition of big chunks such as 256-1280 bytes.

III. ENHANCED AHO-CORASICK ALGORITHM

At the heart of our solution is a modification to the widely-
deployed Aho-Corasick signature matching algorithm. Our

Fig. 1. The Aho-Corasick trie corresponding to the signature set
E,BE,BD,BCD,BCAA,CDBCAB}. Solid black edges correspond to forward
transitions, while dashed red edges correspond to failure transitions.

modification enhances the algorithm so that it will be able to
skip previously scanned bytes, which are saved in a dictionary
along with some auxiliary information. In this section we first
briefly describe the Aho-Corasick algorithm and its properties,
and then describe the required modifications to the algorithm.
We prove that although the modified algorithm skips bytes, it
detects the same patterns as the original algorithm.

A. Background: The Aho-Corasick Algorithm

The Aho-Corasick (AC) algorithm [7] matches multiple
signatures simultaneously, by constructing a trie that represents
the signature set. Usually, this trie is then converted into a
Deterministic Finite Automaton (DFA) for better performance
and then, with this DFA at its disposal the text is processed
in a single pass, as we do in our implementation, described in
Section VI.

The trie is constructed in two phases. First, all the sig-
natures are added from the root as chains, where each state
corresponds to one byte. When signatures share a common
prefix, they also share the corresponding set of states in the
trie. The edges of the first phase are called forward transitions.
In the second phase, failure transitions are added to the trie.
These edges solve situations where, given an input byte b and
a state s, there is no forward transition from s using b. In such
a case, the trie should follow the failure transition to some
state s0 and take a forward transition from there. This process
is repeated until a forward transition is found or until the root
is reached, leading to possible failure paths.

Figure 1 shows an example of an AC trie. Let the label of
a state s, denoted by L(s), be the concatenation of bytes along
the path from the root to s. Furthermore, let the depth of a
state s be the length of the label L(s). The failure transition
from s, f (s), is always to a state s0, whose label L(s0) is the
longest suffix of L(s) among all other trie states.

The trie is traversed starting from root. When the traver-
sal goes through an accepting state, it indicates that some
signatures are a suffix of the input; one of these signatures
always corresponds to the label of the accepting state. Note that
the unique structure of the trie guarantees that the converted

TABLE I. SAMPLE DICTIONARY: EACH STRING IS ASSOCIATED WITH
THE DFA STATE REACHED BY SCANNING IT FROM THE ROOT.

string saved state
BYTAFGBC s5
CABXTHGH s0

DFA has exactly the same number of states, but many more
transitions, to take care of all possible inputs without failure
transitions.

The correctness of the AC algorithm essentially stems from
the following simple property (see, e.g., [22, Property 2]):

Property 1 Let b1, . . .bn be the input, and let s0, . . . ,sn be
the sequence of states the AC algorithm goes through, after
scanning the bytes one by one (s0 is the root of the DFA). For
any i 2 {1, . . . ,n}, L(si) is a suffix of b1, . . . ,bi; furthermore, it
is the longest such suffix among all other states of the DFA.

B. Enabling Skips within the Execution of the Aho-Corasick
Algorithm

To enable skipping repeating data, we add to the Aho-
Corasick algorithm an auxiliary dictionary that contains (pop-
ular) strings. We explain in Section IV how the dictionary is
created, and how it is accessed from the data-path. In this
section, we will show how our modified algorithm uses the
dictionary in order to skip bytes during execution without
missing signatures.

1) Scanning the dictionary: We assume that the dictionary
is a set of strings. For each string, separately, we initiate a DFA
scan from the initial state s0. If a match is found by the end of
the string, we delete the string from the dictionary2. Otherwise,
we save the state reached by the DFA after scanning this string
along with the string itself.

2) Scanning the data: During DFA traversal, for each input
byte, the algorithm checks whether it can skip subsequent
bytes using one of the strings in the dictionary. More formally,
let (b1, . . . ,bn) denote the data; when scanning byte bi, the
algorithm looks for the gram gramk(bi)= (bi,bi+1, . . . ,bi+k�1).
If x is found, the algorithm proceeds in two steps.

First, it performs a left-margin resolution step, in which
we start scanning the bytes (bi,bi+1,bi+2, . . . ,bi+k�1) one by
one until, when scanning a byte bi+ j we reach a state in the
automaton whose depth is less than or equal to j.

Then, if bi+k�1 was not reached in the left-margin reso-
lution step, the algorithm transitions to the state which was
saved along with gramk(bi) and continues scanning from byte
bi+k.

3) Correctness proof: The correctness of our algorithm
stems from the fact that after skipping gramk(bi), the algorithm
transitions to the same state as it would if gramk(bi) was
scanned byte by byte. In addition, we need to ensure that if
some signature is detected when gramk(bi) was scanned byte
by byte, it will also be detected in our algorithm.

Theorem 1 Let the traffic be (b1, . . . ,bn) and let (s0, . . . ,sn) be
the sequence of states the traditional Aho-Corasick algorithm

2In practice, this rarely happens and does not have any effect on the overall
system performance.

TABLE II. EXAMPLE OF SCANNING PROCESS FOR INPUT STRING CDBCABYTAFGBCD.

bi C D B C A B Y T A F G B C D
dictionary hit/miss miss miss miss miss miss hit - - - - - - - miss
s after scanning bi s7 s8 s9 s10 s11 s12 s0 - - - - - s5 s6

depth 1 2 3 4 5 6 0 - - - - - 2 3
j (left-margin res.) - - - - - 1 2 - - - - - - -

goes through, after scanning the bytes one by one (starting
from the root of the DFA). Assume that our modified algorithm
scans the traffic up to byte bi, it is in state si, and it found
the string gramk(bi) = (bi,bi+1, . . . ,bi+k�1) in the dictionary.
Let zi+k be the state of our algorithm after scanning byte bi+k.
Then, (i) si+k = zi+k; (ii) if there are one or more accepting
states in states (si, . . . ,si+k), the left margin resolution step
does not end before scanning byte bi+ j0 , for which si+ j0 is the
last accepting state in (si, . . . ,si+k).

Proof: If the left-margin resolution step does not end
before reaching byte bi+k then our modified algorithm operates
exactly the same as the traditional algorithm and therefore
reaches the same state. Otherwise, let j be the index in
which the left-margin resolution step ends. By construction this
implies that the depth of si+ j is at most j, which implies that
the depth of si+k is at most k (each transition in the automaton
increases the depth by at most 1).

By Property 1, L(si+k) is the longest suffix of (b1, . . . ,bi+k)
among all states. Since its depth is at most k, it implies
that L(si+k) is in fact the longest suffix of gramk(bi) =
(bi, . . . ,bi+k). On the other hand, by applying Property 1 on the
Aho-Corasick scan of gramk(bi) (which was performed while
scanning the dictionary), we get that L(zi+k) is also the longest
suffix of gramk(bi), which implies that L(si+k) = L(zi+k), and
therefore, si+k = zi+k.

Similarly, assume that j < j0. Then the depth of si+ j0 is
smaller than j0, which implies that the length of the signature
corresponding to si+ j0 is smaller than j0. By Property 1, this
signature is a suffix of (bi, . . . ,bi+ j0), and therefore it is fully
contained in gramk(bi). This contradicts the construction of the
dictionary, in which strings that contain signatures are deleted.

C. Motivating Example

We demonstrate the insights behind our algorithm using
the following motivating example. Assume that the pattern
set is {E,BE,BD,BCD,BCAA,CDBCAB}, whose corresponding
Aho-Corasick automaton is depicted in Fig. 1. In addition,
we assume that the dictionary contains the strings depicted
in Table I. For each such string, the resulting state in the
independent Aho-Corasick scan is also saved.

There are two kinds of matches that involve strings from
the dictionary:

1) Signatures whose prefix is a suffix of a string in
the dictionary. For example, the prefix BC of the
signatures BCD and BCAA is a suffix of the first
string.

2) Signatures whose suffix is a prefix of a string in
the dictionary. For example, the suffix CAB of the
signature CDBCAB is a prefix of the second string.

Assume that the input traffic is CDBCABYTAFGBCD. The
first five bytes did not yield any dictionary match and the
Aho-Corasick is at state s11. Next, string BYTAFGBC is in
the dictionary. Since the depth of s11 is 5, which is greater
than 0, we continue the scan with B. The new current state
is s12, whose depth is 6 > 1, and therefore we continue to
the next character, Y . After that, the current state is s0, whose
depth is less than 2. Thus, the left-margin resolution step is
completed, and we can skip to the saved state s5. The algorithm
skips the rest of the strings’ bytes (in this case k-2 bytes) and
continue the scan with byte D. Then, the algorithm reaches the
accepting state s6 and finds the signature BCD. The flow of
the example is presented in Table II and the skipped characters
are marked in bold.

IV. SYSTEM DESIGN

Our system is divided into two components: the slow path
and the data path.

A. The Slow Path

The slow path is responsible for creating a dictionary of
repeated fixed-length strings (namely, k-grams, where k is the
length of the strings). As explained in Section III, for each
stored k-gram, we initiate an Aho-Corasick scan from the
initial state s0 and save the DFA state in the end of this scan.
This information is sufficient for the data path to adjust its
state after skipping that gram.

We note that while our dictionaries aim to store the most
popular k-grams, they suffer from inherent inaccuracies, which
sometimes reduce our mechanism’s gain; our experiments
show, however, that these inaccuracies are not significant.
Naturally, the most important reason for such inaccuracies is
that the dictionary is built on offline, slightly outdated data.
Moreover, in a typical multi-core environment, the slow path
runs on a single core and gets only samples of the packets.
Finally, we use an off-the-shelf approximate heavy-hitters
algorithm [2], which finds popular k-grams but sometimes not
the optimal dictionary.

Many heavy-hitter algorithms use a sliding window and
store all popular k-grams. However, this results in dictionary
pollution, in which m� k+1 substrings of length k of a very
popular string of length m are stored in the dictionary, while
our mechanism never accesses all the strings but only m/k
of them.3 The algorithm presented in [2] solves this problem
by trying to concatenate k-grams to longer strings, resulting in
heavy hitters of variable length (that is, the parameter k is then
the minimal length of the heavy hitters). Since our data path
works on fixed-size grams better, we split each heavy hitter
string of length m to bm/kc consecutive k-grams.

3For example, assume the string abcdefgh is very popular in the traffic,
and k = 4. The dictionary holds the following 4-grams: abcd, bcde, cdef,
defg, and efgh. Most of the time, the data path uses the 4-grams abcd and
then efgh in order to skip over the long popular string.

The resulting dictionary is stored as an open hash table,
where colliding keys are chained. Keys are added in order of
popularity, such that the most popular key is first in the chain,
to improve average lookup time.

B. The Data Path

The data path uses a sliding window of length k to extract
k-grams from the data. For each k-gram, the algorithm searches
the dictionary and retrieves the corresponded entry if a match
is found. If there is no match, one byte is scanned with
the Aho-Corasick algorithm, the window slides one byte,
and the process repeats itself with the next k bytes of the
data. If there is a match, left margin resolution is performed
(see Section III-B): the matched k-gram is scanned byte by
byte until reaching a state whose depth is smaller than or
equal to the position of the last scanned byte in the gram.
Then, the data path adjusts its state to the stored state in the
corresponding dictionary entry and advances to the end of the
k-gram. Namely, if the k-gram has started in the i-th byte of
the traffic, the next byte to be scanned will be the (i+ k)-th
one.

Since the dictionaries might not reside in fast memory or
cache and might therefore require slower access operations, we
first query a Bloom filter [34] to ensure that the gram is in the
dictionary. A Bloom filter is a compact set representation (in
our case, the set is all the grams in the dictionary) that enables
efficient approximated set membership queries4; thus, if the
gram is not in the dictionary, the overhead of our mechanism
is reduced by one order of magnitude (see Table III for exact
numbers). We note that Bloom filters sometimes generate false
positives, which in our case imply redundant accesses to the
dictionary. However, this only results in a performance penalty
as the dictionary-miss is detected immediately afterwards.
Since the false positive rate is very small, this performance
penalty is usually insignificant. Algorithm 2 describes the data
path.

a) Hardware Implementation Analysis: The data path
can be implemented in hardware to utilize parallelism: In such
an implementation, a dictionary lookup can be done in parallel
to Aho-Corasick scan, and once a k-gram is found in the
dictionary, a skip can be performed.

An additional benefit of a hardware implementation is that
the Bloom filter and dictionary data structures can be put into
faster memories. Current SRAM chips, which are limited to
at most few megabytes, operate with access latency of about
1-10 nanoseconds, compared to DRAM chips, which provide
access latency of more than 60 nanoseconds [36]. The data
structures for the Bloom filter and dictionary hash table are
very small in comparison to the AC DFA (tens or hundreds of
megabytes for the latter, to a few megabytes in the worst-case
scenario for the former). Thus, they can be located on a SRAM
chip, while most of the AC DFA must reside in DRAM.

4We have implemented the Bloom filter as a bit array. We used the Intel on-
chip instruction crc32q as the hash function. If more than one hash function
is used, we used different random seeds for CRC to achieve independent
hash functions as described in [35]. Upon a Bloom filter hit, the same hash
computation is later used to access the dictionary hash table. Note that for
this reason sliding window computation is easy.

function SCANGRAM(B = (b0,b2, ...,bn�1),n)
cur s s0
i 0
while i < n do

gram (bi,bi+1, ...,bk�1)
h Hash(gram)
j 0
if h 2 BloomFilter then

entry Dictionary[h]
if gram = entry.gram then

while cur s.depth > j do
cur s AcScanByte(cur s,gram[j])
i i+1
j j+1

i i+(k� j)
cur s entry.state

else
cur s AcScanByte(cur s,gram[j])
i i+1

else
cur s AcScanByte(cur s,gram[j])
i i+1

Fig. 2. The data path algorithm

V. ANALYSIS

In this section we analyze the various parameters that
influence the performance of our system. Given traffic of length
n bytes, let k be the length of grams. Let bi be the i-th byte
of the traffic, and let gramk(bi) = (bi, . . . ,bi+k�1). We denote
the dictionary as the set D and the Bloom filter that represents
it as BF(D). With slight abuse of notations, x 2 BF(D) if the
Bloom filter indicates that the gram x is in D.

We first classify the bytes of the traffic according to the
way our system scans them. Specifically, byte bi is a miss
byte if the algorithm queries the dictionary and discovers that
gramk(bi) /2 D. A byte is a left-margin byte if the algorithm
scans this byte as part of a left-margin resolution of a matched
gram. Finally, a byte is a skipped byte if it is neither a miss
byte nor a left-margin byte. For ease of presentation, we refer
to left-margin and skipped bytes collectively as in-gram bytes.
Finally, we call byte bi a hit byte if the algorithm queries the
dictionary and discovers that gramk(bi) 2 D; note that a hit
byte can be either a skipped byte or a left-margin byte.

We define p as the probability that a byte is an in-gram
byte. This immediately implies that the number of miss bytes
is n(1� p) and that the number of hit bytes is np 1

k , since only
the first byte of each matched gram is a hit byte. We then
define c as the average number of Aho-Corasick scan iterations
until the left margin resolution is completed.

The false positive rate of the Bloom filter is defined as
follows:

FPRBF(D) = Pr[x 2 BF(D) and x 62 D].

We note that unlike previous parameters, FPRBF(D) does not
depend on the inspected traffic and only describes the accuracy
of the Bloom filter. When it is clear from the context, we will
refer to FPRBF(D) as FPR.

Given a byte bi which is the beginning of a gram x =
gramk(bi), we consider three disjoint events:

1) x2D: The gram x is in the dictionary D. This happens
for np

k input bytes.
2) x /2 D and x 2 BF(D): The gram x is not in the

dictionary D but BF(D) falsely indicates that x is
in D. This happens for FPR ·n · (1� p) input bytes.

3) x /2 D and x /2 BF(D): The gram x is not in the
dictionary D and BF(D) correctly indicates that. This
happens for (1�FPR) ·n · (1� p) input bytes.

We next quantify the processing times of each operation:

• AC - The average processing time of a single byte scan
using the Aho-Corasick algorithm.

• DICT - The average processing time of accessing the
dictionary and retrieving the entry of a specific k-gram.

• BF - The average query time of a Bloom filter query.

When x2D, the expected processing time is BF+DICT+
c · AC. When x /2 D, the expected processing time is BF +
FPR ·DICT+AC. Putting all terms together implies that the
average per-byte processing time is:

p
k
(BF+DICT+ c ·AC)+(1� p)(BF+FPR ·DICT+AC) .

This processing time immediately yields that in order
to accelerate the regular signature matching process (whose
average per-byte processing time is AC), the ratio of in-gram
bytes, denoted pmin, should be at least:

pmin >
k(BF+ FPR ·DICT)

(k�1)BF+(k · FPR�1) ·DICT)+(k� c)AC
.

When pmin is lower than this value, the software imple-
mentation is not expected to provide any speedup and thus, on
such traffic, should not be used.

A. Hardware Implementation Analysis

When the data path is implemented in hardware, the Bloom
filter and dictionary lookups can be done in parallel with
Aho-Corasick scans. This implies a significant reduction in
scanning of miss bytes: max{AC,BF} instead of AC+ BF in a
software implementation. In addition, left-margin resolution of
a gram can be done in parallel with the corresponding hit byte
processing. When no bytes are scanned in the left boundary of
a gram, one Aho-Corasick scan is still performed (since the BF
query result is not known). This effectively results in a slightly
higher number of in-gram bytes to scan, on average, denoted
by c0; note that c0 c+ 1. The average per-byte processing
time in such an implementation becomes:

(1� p) ·max{AC,BF+ FPR ·DICT}+
p
k max{c0 ·AC,BF+DICT})

For all reasonable parameter values, the hardware imple-
mentation outperforms the naı̈ve Aho-Corasick implementation

that does not leverage traffic repetitions. Note that our approach
can be used in conjunction with other hardware approaches for
string matching and improve their performance.

VI. EXPERIMENTAL RESULTS

Our experimental code for the data path is based on
the multi-pattern matching code of the Snort [3] intrusion
detection and prevention system, which implements the Aho-
Corasick DFA. We added to the basic DFA code the ability to
receive a dictionary, to build a Bloom filter and a dictionary
hash table, and to perform skips according to our mechanism.
In our experiments we limited the number of k-grams in the
dictionary to about 45K. We found that this is usually enough
to achieve a high skip ratio while maintaining a relatively fast
dictionary lookup process. For this number of elements, we
used a Bloom filter with one hash function5 and 0.5M-1M bits.
For HTTP traffic, we used Snort’s pattern-set (⇠ 4K patterns).

Performance was evaluated on a system with the Intel
Sandy Bridge Core i7 2600 CPU with a 32 KB L1 data cache
(per core), 256 KB L2 cache (per core), and 8 MB L3 cache
(shared among cores). The operating system was Linux Ubuntu
11.10.

A. Traffic Sources

We used the following traffic traces for the experiment:

• Popular Websites: we crawled several worldwide and
local popular websites and downloaded pages up to
depth 2. We repeated this process every 1.5 hours to
track changes in HTTP responses. For our experiments
we only considered HTML content.

• General HTML Traffic: HTML responses from a set
of HTTP traffic traces, as described in Section VI-B.

• Cache-Miss Attack Traffic: In a cache-miss attack,
attacker sends a large number of similar patterns,
multiple times, in order to force the AC DFA out
of its locality area in the cache, and thus experience
much more cache misses [37]. These traces mix gen-
eral HTTP traffic with cache-miss attack packets, in
increasing attack intensity (bandwidth), as described
in [18].

B. HTTP Content Characteristics

In order to examine the potential gain from our mechanism
on general HTTP and HTML traffic, we analyzed the char-
acteristics of HTTP content. We used a 9 GB trace collected
from a campus wireless network. The trace contained 348,094
HTTP flows, where an HTTP flow is defined by a request and
its corresponding response.

When all the HTTP traffic was analyzed as a whole,
there were fewer repetitions. However, different content types
behave very differently. For example, partial repetitions are
very common in text/html or text/plain types, and entire file
repetitions are mainly found in images. Some of the types do
not contain repetitions at all (except for some random strings),

5In our case we found that a single hash function provided sufficient
accuracy while adding more functions greatly reduced performance.

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:application/zip

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:text/html

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:text/plain

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:image/jpeg

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:image/png

10
0

10
1

10
2

10
3

10
4

10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Number of appearances

CDF:application/x−shockwave−flash

Fig. 3. CDF of number of occurrences of 16-byte sequences by content type.

e.g., application/zip. It is clear that we have to treat each type
differently.

For each content type, we counted the repetitions of each k-
gram in the data. Figure 3 presents the cumulative distribution
functions (CDFs) of the number of repetitions per type for k =
16. As presented in the figure, for type application/zip, almost
100% of the strings appear only once and a few strings appear
up to 10 times. However, for the type text/html, 40% of the
strings appear more than once, 10% appear more than 10 times,
and some of them appear more than 10,000 times. Similar
numbers can be found for text/plain. Figure 4 presents the
total repetitions of the different types. The types in the figure
were sorted by their frequency in our traces (also represented
by the gray line). The potential skip ratio was calculated as the
number of bytes in all grams that appeared more than once,
divided by the total number of bytes of the specific type. This
is represented in the figure by the black bars in the figure. The
white bars represents the potential skip ratio for all the data, i.e.
the black bar times the gray line at each point. As we can see
from the figure, 90% of the HTML data and 85% of the plain
data can be potentially skipped (assuming infinite dictionary
space), which means that our mechanism has high potential to
improve performance, either in software or in hardware.

There are other content types for which much of the traffic
need not to be scanned, e.g. xml, asm and c, but their frequency
in our traces is low, and therefore their impact on the global
skip ratio is almost negligible. By skipping only HTML and
plain data, we achieve more than a 35% skip ratio for all the
data.

C. Potential Performance Analysis

To assess the potential performance gain of our mechanism,
we first isolated each component of the model described in
Section V. We measured times for each operation separately
(e.g. Bloom filter lookup, Aho-Corasick DFA lookup, dic-
tionary hash table search) in units of nanoseconds per input
byte. Each operation was isolated and timed using a different

0

0.2

0.4

0.6

0.8

1

% of Content Type from Total

jp
e
g

h
tm

l

p
la

in

o
ct

e
t_

st
re

a
m zi
p

fla
sh

p
n
g flv

m
p
4

co
rr

u
p

t

m
so

ff
ic

e

p
d

f

7
z

g
if

xm
l

a
sm

c

g
zi

p

d
o

se
xe

c

P
o
te

n
tia

l S
ki

p
 R

a
tio

Fig. 4. Skip ratio per content type when using grams with 32-byte width.

TABLE III. SAMPLE MEASUREMENTS FOR MODEL COMPONENTS.

Traffic Component Rate
BF 2.8 ns/byte
AC 4.2�4.3 ns/byte

Popular Website DICT 27�28 ns/byte
(youtube.com) p (pmin) 79% (65%)

FPR 2.46%
c 1.87 bytes

BF 2.1�2.5 ns/byte
AC 38�50 ns/byte

Attack Traffic DICT 28�40 ns/byte
(100% intensity) p (pmin) 84% (27%)

FPR 3.2�3.7%
c 10.1 bytes

BF 2.02�2.3 ns/byte
AC 4.35�4.5 ns/byte

General HTML DICT 25�28 ns/byte
Traffic p (pmin) 47% (61%)

FPR 3.39%
c 1.8 bytes

timer, in separate runs. Note that the different components
have different values with each traffic source as different
traffic induces different AC behavior, different dictionaries, and
different Bloom filters.

Table III shows sample measurements for the different
traffic sources we used. Also, for each traffic source, we
show the value of pmin required for performance gain in the
software implementation. By plugging these numbers into the
corresponding equations in Section V, we can retrieve the
model’s prediction of speedup for each traffic source, for both
the software and hardware implementations, as shown in Table
IV. Note that due to compiler and CPU optimizations, the
values in Table III are only rough estimations. This explains the
differences between actual results and those predicted by the
model. In addition, note that, for example, for general HTML
traffic, while the potential skip ratio computed in Section VI-B
was 90%, the limited dictionary size and fixed width bound the
actual skip ratio to 47%. Note also that when implementing
the solution in hardware, the Bloom filter and dictionary data
structures may be put into a faster memory, not being subject
to cache replacement, and thus provide better rates. However,
for the comparison we assumed that rates are equal; if faster
memory is used then the potential speedups on hardware will
be even faster than those displayed here.

D. Speedup with Software Implementation

Figure 5 shows the actual speedup that our software
implementation achieved on traffic from three worldwide and

0 20 40 60 80 100 120
0

50

100

150

200

Time [Hours]

S
p
e
e
d
u
p
 [
%

]

(a) amazon.com

0 20 40 60 80 100 120
0

50

100

150

200

Time [Hours]

S
p
e
e
d
u
p
 [
%

]

(b) youtube.com

0 20 40 60 80 100 120
0

50

100

150

200

Time [Hours]

S
p
e
e
d
u
p
 [
%

]

(c) ynet.co.il (Local news website)

Fig. 5. Actual speedup achieved by our software implementation on traffic from three popular websites. Baseline throughput values for the three websites in
this figure were (a) 1683 Mbps, (b) 1802 Mbps, and (c) 1710 Mbps, when using a single core for data path.

TABLE IV. MODEL PREDICTED SPEEDUPS FOR SOFTWARE AND
HARDWARE IMPLEMENTATIONS, AND ACTUAL SPEEDUP ACHIEVED BY
OUR SOFTWARE IMPLEMENTATION, FOR VARIOUS TRAFFIC SOURCES.

Potential Actual Potential
Traffic Software Software Hardware

Speedup Speedup Speedup
Popular Website 66% 53% 256%(youtube.com)
Attack Traffic 112% 117% 235%(100%)
General HTML �14% �15% 145%Traffic

local popular websites. All websites we tested gained a pos-
itive speedup in all the experiments we performed. Achieved
speedup was very close to the predicted speedup.

Our mechanism also improves DPI performance when the
system is under a cache-miss attack [18], [37]. Such attacks can
decrease the throughput of the AC DFA by a factor of 7 [37].
As displayed in Table III, the potential number of bytes to skip
(p) is very high in such cases. During an attack, the depth in
the AC DFA is deeper, as a result of the attack itself. Thus, in
most cases, the left boundary scan (c) will be longer. However,
as can be deduced from the analytical model, there is still a
very high potential for throughput gain using our technique.
Figure 6 shows the actual speedup achieved using our software
implementation on traffic with various attack intensities.

E. Determining the Dictionary Width

The width of grams in the dictionary, denoted k, is an
important parameter of our technique. For a fixed width
dictionary, the larger k is, the longer the skips we can perform
when a gram is in the dictionary. If k is too large, however, the
number of grams that can be put into the dictionary is reduced.
Our experiments further show that a variable width dictionary
does not always perform better, due to the longer dictionary
lookup process.

Figure 7 shows how throughput of the software implemen-
tation changes with k on a fixed width dictionary (k = 0 means
no dictionary is used). In this example, the traffic is of a cache-
miss attack of 33% intensity, and k = 32 gives the highest
speedup, 33%.

F. Dictionary Creation and Update

The dictionary is first computed in the slow path when a
first chunk of data is available, as described in Section IV-A.

It can be computed again at each predefined interval, on the
new incoming data. In our experiments, we computed a new
dictionary every 10MB-20MB.

When polling the same site repeatedly every predefined
interval, we create a dictionary based on several samples
together (in our experiments, we polled websites every 90
minutes and created a new dictionary every six hours, on four
different samples).

In most cases, a dictionary that was computed once pro-
vides a steady speedup for a long time, and it is not necessary
to compute a new dictionary frequently. For example, in
the popular websites we studied, we found that even when
not updating the dictionary for days, the potential skip and
actual speedup remained almost as they were when we com-
puted a new dictionary over and over again. Figure 8 shows
the speedup of the software implementation when scanning
youtube.com traffic, similarly to Figure 5(b), but this time,
the dictionary is only updated every 6 hours (after computing
the first dictionary) and 72 hours (after computing another
dictionary, three days later).

VII. CONCLUSIONS

In this work we show how repetitions in network traffic
can be used to enhance DPI performance. We analyze the
potential improvement using a simple, yet accurate, model,
and demonstrate the effectiveness of our mechanism in a set
of experiments.

Our mechanism changes the legacy Aho-Corasick algo-
rithm, adding a dictionary of repeating data. The slow path
of our mechanism uses an off-the-shelf algorithm to recognize
repeating strings and create dictionaries from them. Then, in
the data path, instead of simply traversing the Aho-Corasick
DFA at each step, we first try to learn whether a skip is
possible, and if so, avoid scanning the string again.

We show that on certain common traffic types, for various
use cases, our mechanism achieves very high performance
gain, when implemented in software or in hardware. We
believe that our approach can improve the throughput of DPI
in network middleboxes, cloud services, and SDN.

ACKNOWLEDGMENT

This research was supported by the European Research
Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant agreement no 259085.

0 20 40 60 80 100
−20

0

20

40

60

80

100

120

Attack Intensity [%]

S
p

e
e

d
u

p
 [

%
]

Fig. 6. Speedup achieved by the software
implementation on cache-miss attack traffic with
different attack intensities.

0 16 32 48 64 80 96 112 128 144 160 176 192
350

400

450

500

550

600

650

700

750

800

K [bytes]

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Fig. 7. Throughput change under a cache-miss
attack of 33% intensity, with different widths of
grams in the dictionary, k.

0 20 40 60 80 100 120
0

50

100

150

200

Time [Hours]

S
p

e
e

d
u

p
 [

%
]

Fig. 8. Speedup of software implementation
when scanning traffic from youtube.com, with
dictionary update at the beginning and then only
after 72 hours. Dashed lines indicate dictionary
updates. Baseline throughput is 1802 Mbps.

REFERENCES

[1] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in SIGCOMM, 2013, pp. 487–488.

[2] Y. Afek, A. Bremler-Barr, and S. L. Feibish, “Automated signature
extraction for high volume attacks,” in ANCS, 2013, pp. 147–156.

[3] “Snort,” http://www.snort.org.
[4] “PCRE - Perl Compatible Regular Expressions,” http://www.pcre.org/.
[5] B. W. Watson and G. Zwaan, “A taxonomy of keyword pattern matching

algorithms,” Eindhoven University of Technology, Tech. Rep. 27, 1992.
[6] R. Boyer and J. Moore, “A fast string searching algorithm,” Commun.

of the ACM, pp. 762 – 772, Oct 1977.
[7] A. Aho and M. Corasick, “Efficient string matching: an aid to biblio-

graphic search,” Commun. of the ACM, pp. 333–340, 1975.
[8] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”

University of Arizona, Tech. Rep. TR-94-17, May 1993.
[9] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern

matching on fpgas,” in FPGA, 2004, pp. 223–232.
[10] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kon, and A. Thomas,

“A hardware platform for network intrusion detection and prevention,”
in NP, 2004.

[11] J. Lee, S. H. Hwang, N. Park, S.-W. Lee, S. Jun, and Y. S. Kim, “A high
performance NIDS using FPGA-based regular expression matching,” in
SAC, 2007, pp. 1187–1191.

[12] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast regular
expression matching using small tcams for network intrusion detection
and prevention systems,” in USENIX Security, 2010, p. 8.

[13] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern matching
for network intrusion detection systems,” Selected Areas in Communi-
cations, IEEE Journal on, vol. 24, no. 10, pp. 1781–1792, Oct 2006.

[14] D. Pao, W. Lin, and B. Liu, “A memory-efficient pipelined implementa-
tion of the aho-corasick string-matching algorithm,” ACM Trans. Archit.
Code Optim., vol. 7, no. 2, pp. 10:1–10:27, Oct. 2010.

[15] C.-C. Chen and S.-D. Wang, “An efficient multicharacter transition
string-matching engine based on the aho-corasick algorithm,” ACM
Trans. Archit. Code Optim., vol. 10, no. 4, pp. 25:1–25:22, Dec. 2013.

[16] D. P. Scarpazza, O. Villa, and F. Petrini, “Exact multi-pattern string
matching on the cell/b.e. processor,” in CF, 2008, pp. 33–42.

[17] D. L. Schuff, Y. R. Choe, and V. S. Pai, “Conservative vs. optimistic
parallelization of stateful network intrusion detection,” in PPoPP, 2007,
pp. 138–139.

[18] Y. Afek, A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “MCA2:
multi-core architecture for mitigating complexity attacks,” in ANCS,
2012, pp. 235–246.

[19] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in SIGCOMM, 2006, pp. 339–350.

[20] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “An improved dfa for fast regular expression matching,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, Oct 2008.

[21] A. Bremler-Barr and Y. Koral, “Accelerating multi-patterns matching
on compressed HTTP traffic,” in INFOCOM, 2009, pp. 397–405.

[22] A. Bremler-Barr, S. T. David, D. Hay, and Y. Koral, “Decompression-
free inspection: DPI for shared dictionary compression over HTTP.” in
INFOCOM, 2012, pp. 1987–1995.

[23] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in SIGCOMM, 2000, pp. 87–95.

[24] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in SIGMETRICS, 2009,
pp. 37–48.

[25] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “Endre: An end-system
redundancy elimination service for enterprises.” in NSDI, 2010, pp.
419–432.

[26] E. Zohar, I. Cidon, and O. O. Mokryn, “The power of prediction: cloud
bandwidth and cost reduction,” SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 86–97, Aug 2011.

[27] M. Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler, “A block-
sorting lossless data compression algorithm,” Tech. Rep., 1994.

[28] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun 2000.

[29] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web proxy
caching,” in SOSP, 1999, pp. 16–31.

[30] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy, “Organization-based analysis of web-
object sharing and caching,” in USITS, 1999, pp. 3–3.

[31] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Information Theory, vol. 23, no. 3, pp. 337–
343, May 1977.

[32] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for http,” SIGCOMM
Comput. Commun. Rev., vol. 27, no. 4, pp. 181–194, Oct 1997.

[33] G. S. Shenoy, J. Tubella, and A. González, “Improving the performance
efficiency of an ids by exploiting temporal locality in network traffic,”
in MASCOTS, 2012, pp. 439–448.

[34] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul 1970.

[35] F. Hao, M. Kodialam, and T. V. Lakshman, “Building high accuracy
bloom filters using partitioned hashing,” in SIGMETRICS, 2007, pp.
277–288.

[36] D. Levinthal, “Performance analysis guide for intel core i7 proces-
sor and Intel Xeon 5500 processors,” http://software.intel.com/sites/
products/collateral/hpc/vtune/performance analysis guide.pdf.

[37] A. Bremler-Barr, Y. Harchol, and D. Hay, “Space-time tradeoffs in
software-based deep packet inspection,” in HPSR, 2011, pp. 1–8.

