
Yo-Yo Attack -
Vulnerability in auto-scaling mechanism

Mor Sides
Interdisciplinary Center

Herzliya, Israel
mor.sides@idc.ac.il

Anat Bremler-Barr
Interdisciplinary Center

Herzliya, Israel
bremler@idc.ac.il

Elisha Rosensweig
Cloudband, Alcatel-Lucent

elisha.rosensweig@alcatel-
lucent.com

CCS Concepts
•Security and privacy → Denial-of-service attacks;
Distributed systems security; •Computer systems orga-
nization → Cloud computing; Reliability; •Networks
→ Middle boxes / network appliances;

1. INTRODUCTION
In the last few years, more and more public and private

networks rely on cloud and virtualization to provide the ser-
vice while meeting their SLA commitments. One attractive
property of the cloud is its support for rapid elasticity - the
ability to scale the number of machines up and down accord-
ing to the load on the machine, which can be configured to
occur automatically, according to customer-set thresholds.

This auto-scaling mechanism provides an ability to cope
with many of the basic Distributed Denial of Service (DDoS)
attacks (as describe in [4]), but opens the door to a new
type of attack, the Economic Denial of Sustainability at-
tacks (EDoS) [2]. In DDoS, an attacker overwhelms the
victim with bogus traffic, blocking the service from legiti-
mate users. With a cloud-based operation, the auto-scaling
mechanism ensures that a victim can cope with an attack
by providing the victim with more resources to handle the
attack. This solution, however, comes with an economic
penalty termed EDoS, since the victim needs to pay for the
extra not beneficial resources that process the bogus traffic.

In many DoS attacks, the danger of the attack impact is
mitigated by the expected cost to the attacker: the more
effort required on the side of the attacker, who has to invest
in generating large amounts of traffic, the less likely it is to
occur. In this work we present the ’Yo-Yo attack’, an effi-
cient attack on the auto-scaling mechanism, which results in
an Economic Denial of Sustainability attack (EDoS) that is
difficult to detect. The attack cycles between two phases re-
peatedly: In the on-attack phase, the attacker sends a short
burst of traffic that causes the auto-scaling mechanism to
perform a scale up. In the off-attack phase, the attacker
stops sending the excess traffic. This second phase takes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790017

place when the attacker identifies that the scale up has oc-
curred. Once the attacker determines that the scale down
occurred, the process is repeated. Clearly, the strength of
the attack is partially determined by the ability of the at-
tacker to determine when to switch between the two phases.

We demonstrate the Yo-Yo attack on Amazon cloud ser-
vice, and show how the attacker can detect the state of the
auto-scaling mechanism. The incentive of the attacker is to
reduce the cost of the attack, i.e., minimize the attack traffic,
and produce maximum damage, i.e., maximize the number
of extra VMs used to process the attack. Reducing the at-
tack cost has two impacts: the attacker uses his resources
efficiently, and the attack is harder to detect. In our exper-
iments over AWS, the attacker remained in the off-attack
phase approximately 77% of the time, while the victim is
constantly in flux.

The Yo-Yo attack can also be considered a Reduction of
Quality (RoQ) attack [3]. RoQ attacks aim to keep an adap-
tive mechanism oscillating between over-load and under-load
conditions. In other areas, it has been shown that load-
balancing mechanisms are vulnerable to such attacks. To
the best of our knowledge, our work is the first to demon-
strate such a vulnerability in the auto-scaling mechanism.

2. AUTO-SCALING MECHANISM
An auto-scaling mechanism is standardly managed by the

orchestrator component (also known as service controller).
Each cloud solution comes with its own auto-scaling en-
gine: Heat in Openstack, autoscaler in Google Cloud, and
auto-scaling in Amazon Elastic Compute Cloud (Amazon
EC2) [1]. Basically, in each of these systems the underly-
ing algorithms lets the cloud customer, referred to in our
work as the user, to define a scaling criteria, and the corre-
sponding thresholds for overload and underload. In Amazon
auto-scaling, which is where we conducted our experiment,
the possible metrics to use for this criteria are CPU utiliza-
tion, in/out network traffic in bytes and disk read/write in
bytes or operations. In our experiment we choose the CPU
utilization criteria, and correspondingly implement a service
where each connection requires high CPU consumption.

Each user needs to configure rules for performing scale up
and down, as well as the minimum and maximum number of
machines allowed. Each scale rule is defined by a threshold
and a scale-interval, s.t. if the threshold was exceeded for
the duration of the scale-interval, the scaling operation is
performed. For example in our experiment, we defined that
scale down is performed if the CPU utilization is below 10%
for 1 minute. We begin with a single machine, the minimum

103



Figure 1: Scale up approximation

amount allowed, and cap it at two machines at maximum.
Another important configurable parameter is the cooldown
period, i.e., the number of seconds after a scaling activity
completes before another can begin (in our experiment this
was set to two minutes). We note that according to our
experiments the initialization of a new machine takes around
2-2.5 minutes, which includes the time duration between the
scale up event starts and a new machine is allocated, until
the service is up on the new machine.

The attacker motivation is to maximize the attack po-
tency, which as defined in [3] is equal to k/m, where k is
the fraction of time an extra machine is required by user,
and m is the fraction of time an attacker must be trans-
mitting traffic. If the internal parameters are known to the
attacker, which is not the usual case, the attacker can easily
optimize its attack cost. The attack should be in the on-
attack phase for a duration equal to the scale-up-interval,
and then switch to off-attack for the duration equal to the
initialization of a new machine plus the maximum time be-
tween scale-down-interval and the cooldown period. While
these parameters are usually unknown to attacker, we find
that the attacker can determine a good approximation for
them. The key idea is that scale is done usually in order to
improve the response time, thus the response time reveals
some information on the state of the auto-scaling mecha-
nism. Figure 1 shows the response time (in milliseconds) as
a function of the elapsed time (in seconds), where the attack
began at t = 10 seconds. It is clear that after 280 seconds a
new machine is up and running, since the response time is
reduced by half.

3. YO-YO ATTACK
We named our attack the Yo-Yo attack since the attacker

oscillates from the on-attack phase to the off-attack phase.
We demonstrate the Yo-Yo attack on Amazon, using simple
attack where the goal of the attacker is to add extra machine
and thus performing a EDoS attack. In our work here we
simulate the best case attack from the attacker perspective,
where we assume the attacker is aware of when scaling occurs
relying on diagnosis Fig.1.

Figure 2 shows the number of machines as a function of
attack time, where we compares a brute force DDoS attack
that sends a constant amount of traffic to a Yo-Yo attack
where the factor between off-attack to on-attack is almost
3.5, i.e., reducing the attack cost in about 77%. In our
experiment the damage is the time the user has two machines
running, and the cost is the fraction of time during which
the on-attack phase is active. In a full DDoS attack, the
attack is always on and thus the potency is 1, while in our
simulated Yo-Yo attack the potency is 0.71/0.23 which is
3.08. Thus the attacker is 3 time more effective.

Figure 3 demonstrates that in Yo-Yo attack, there is addi-

Figure 2: Machine count comparison

Figure 3: Response time comparison

tional damage in the form of high response time to a regular
client. The regular client suffer a high response time while
the system is under attack and the scale up is in process.
While in constant DDoS attack, it happens only once at the
begining, under the Yo-Yo attack it happens every on-attack
phase. We note that in stateful services the damage can be
larger. If the client’s state move to another VM in every
scale action it will increase the scaling duration. Hence a
scheduling mechanism should minimize the number of times
a client changes machine. Designing such scheduling mech-
anism is part of our ongoing research.

4. CONCLUSION
In this work we shed some light on the potential of ex-

ploiting the auto-scaling mechanism to perform an efficient
attack, that impacts the cost of a service and the response
time of standard users. While part of the promise of Network
Function Virtualization (NFV) is that network services and
middleboxes will enjoy the auto-scaling property, our work
shows that special care should be taken to prevent attackers
from using this mechanisms to reduce the value of NFV.

5. REFERENCES
[1] Amazon web services, auto scaling.

http://aws.amazon.com/autoscaling/.

[2] Z. A. Baig and F. Binbeshr. Controlled virtual resource
access to mitigate economic denial of sustainability
(edos) attacks against cloud infrastructures. In Cloud
Computing and Big Data (CloudCom-Asia), 2013.

[3] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang.
Reduction of quality (RoQ) attacks on dynamic load
balancers: Vulnerability assessment and design
tradeoffs. In INFOCOM, 2007.

[4] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

This research was supported by European Research Coun-
cil (ERC) Starting Grant no. 259085.

104




