*
*x

* IDC Efi Arazi School
HERZLIYA | of Computer Science

"o

The Interdisciplinary Center, Herzlia

Efi Arazi School of Computer Science
M.Sc. program - Research Track

Efficient Round-Trip Time
Monitoring in OpenFlow Networks

by
Alon Atary

M.Sc. dissertation, submitted in partial fulfillment of the requirements
for the M.Sc. degree, research track, School of Computer Science
The Interdisciplinary Center, Herzliya

January 2016

This work was carried out under the supervision of Prof. Anat Bremler-Barr
from the Efi Arazi School of Computer Science, The Interdisciplinary

Center, Herzliya.

Acknowledgments

This research was supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 259085, and by
the Neptune Consortium, administered by the Office of the Chief Scientist of the Israeli Ministry

of Industry, Trade, and Labor.

Abstract

Monitoring Round-Trip Time provides important insights for network troubleshooting and traffic
engineering. The common monitoring technique is to actively send probe packets from selected
vantage points (hosts or middleboxes). In traditional networks, the control over the network
routing is limited, making it impossible to monitor every selected path.

The emerging concept of Software Defined Networking simplifies network control. How-
ever, OpenFlow, the common SDN protocol, does not support RTT monitoring as part of its
specification. In this work, we leverage the ability of OpenFlow to control the routing, and
present GRAMI, the Granular RTT Monitoring Infrastructure. GRAMI uses active probing
from selected vantage points for efficient RT'T monitoring of all the links and any round-trip
path between any two switches in the network.

GRAMI was designed to be resource efficient. It requires only four flow entries installed
on every switch in order to enable RTT monitoring of all the links. For every round-trip path
selected by the user, it requires a maximum of two additional flow entries installed on every
switch along the measured path. Moreover, GRAMI uses a minimal number of probe packets,

and does not require the involvement of the controller during online RTT monitoring.

ii

Contents

1 Introduction

2 Background and related work
2.1 Time measurements in the internet
2.2 Measurements in OpenFlow networks

2.3 Estimating one-way delay

3 GRAMI Overview
3.1 Goal and considerations

3.2 The workflow of GRAMI

4 GRAMI offline phase
4.1 Computing the M P locationset

4.2 Calculating the overlay network

5 GRAMI online phase
5.1 Probe packet distribution over the overlay network . .

5.2 RTT Calculations

6 GRAMI - technical details
6.1 Tagging mechanism.

6.2 The flowentries

7 Evaluation and discussion
7.1 Building the overlay network
7.2 Overhead analysis
7.3 Linkdepth
74 MPlocationset,

7.5 Sensitivity to network conditions and dynamic changes

8 Conclusions

iii

TR R R

(=)

10

12
12
14

16
16
17

20
20
21
22
22
24

26

List of Figures

1.1

3.1

4.1

4.2

5.1

5.2

7.1

7.2

7.3
7.4

7.5

7.6

Monitoring the symmetric RTP: s9,84,86« .« o oo oo oo oo 2
The workflow of GRAMI 7
(a) Example topology of network switches.

(b) The overlay network after connecting M P mq to ss.

(¢) The overlay network after connecting M P m; to s3 and MP mg to sg. 10
calculating the overlay network for two M Ps. 11
Step-by-step distribution process for the network links. The black arrows repre-

sent forward probe packets and the white arrows represent return probe packets.
For convenience, the steps are presented synchronously. 13
Monitoring RTP of the asymmetric RTP P={sa, s4, 53, s2}. The numbers on the
arrows represent steps in a synchronous network. The black arrows represent
forward probe packets, the dotted arrows represent probe packets traversing P,

and the white arrows represent return probe packets. 14

GRAMI vs. forwarding monitored RTT CDFs for paths composed of different
number of links. oL 21
Scatter plot of the average standard deviation in the RTT measurements as a
function of the link’s depth. Every x is a link in the network. 22
Average RTT of the links in the network as a function of the number of M Ps. . 23
Average standard deviation in the RT'T measurements of all the links as a function
of the number of MPs. e 24
RTT over time for a single link that was overloaded at known times. In the solid
segment, we overloaded the network with 57Mbps, as opposed to 54 Mbps in the
dotted segment. L e 24

RTT over time for a single link with dynamic changes. 25

iv

List of Tables

2.1

6.1

6.2

7.1
7.2

GRAMI vs. Shibuya et al.’s solution for network with n links and » RTPs.

Flow entries installed on switch s. The egress ports and parent ports are derived
from the overlay network. The ingress port is the port from which the packet
entered.o
The tagging of a probe packet in every possible state. We note in parentheses the

number of bits required for each tag in a network with n switches and r RTPs.

Calculation times of the overlay network for various topologies and a single M P.

Optimal vs. worst location for a single MP.

Chapter 1

Introduction

Round Trip Time, the time required to send a packet towards a specific destination and receive
a response, is frequently used as a metric for network performance assessment. The common
technique for RTT monitoring is to send probe packets from vantage points in the network and
monitor their RTT. In order to monitor a specific path, control over the routing is required. How-
ever, in traditional networks, the routing is determined by traditional routing protocols; thus,
monitoring every path in the network is practically impossible. Moreover, the monitored paths
can change due to the dynamic nature of the traditional routing protocols, creating unstable
paths and inconsistent RT'T measurements [1, 2].

In recent years, SDN networks are becoming more common, and promise easier control over
the network. However, OpenFlow, the common SDN protocol, does not provide any support of
RTT measurements as part of its specification [3]. Moreover, OpenFlow switches do not have
an IP address in their datapath. As a result, tools like Ping and Traceroute are not suitable for
monitoring paths between two switches in the network. In this work, we present GRAMI, an
infrastructure that leverages the abilities of OpenFlow to fix paths in the network and duplicate
packets within the switches for two purposes. First, it enables RTT monitoring of any round-
trip path (RTP) between any two switches in the network, i.e., any path that starts in switch
si, leads to switch s;, and returns to s;, not necessarily in a symmetric path. Consequently,
GRAMI can provide useful information for assessing the quality of different routing policies.
Second, it efficiently monitors the RTT of all the links in the network. Thereby, GRAMI enables
better anomaly detection and bottleneck identification.

To conduct the monitoring, a monitoring application is installed on hosts at preselected
vantage points, turning them into monitoring points (M Ps). The M Ps send probe packets and
monitor their RTT. A single M P is capable of monitoring the entire network, but using multiple
M Ps can reduce the number of links monitored by each M P, and improve the accuracy of the

measurements.

GRAMI is composed of two phases, an offline phase and an online phase. In the offline
phase, an application installed on the controller builds a single overlay network and installs its
corresponding flow entries, which define the routing for the probe packets. The overlay network
enables monitoring of all the links in the network and all the RTPs selected by the user. In
order that every link be measured ezactly once, the overlay network is composed of DAGs with
the M Ps as their starting vertices. As the number of links between the M P and the switch/link
(i.e., the depth of the switch/link) increases, there is more likely to be noise in the monitored
RTT. Hence, the path from every switch and link to its closest M P in the overlay network is the
shortest possible. Whenever a dynamic change in the network occurs, the controller application
automatically recalculates the overlay network.

In the online phase the M Ps repeatedly send probe packets. The probe packets are dis-
tributed over the overlay network to every switch, using the shortest path. Along the way, the
switches use tagging in order to identify the path traversed by each probe packet and the path
it should traverse. When a probe packet is received at a switch s, it triggers the measurement
of every egress link of s according to the overlay network, and of all the preconfigured RTPs
that start at s. The probe packet is duplicated and tagged, and one tagged clone is sent back
to its original M P on the same shortest path of the overlay network. The other tagged clones
are sent to the egress links and to the preconfigured RTPs. The duplication capability of the
switches reduce the load caused by probe packets since only one probe packet is sent from each
MP. The duplication also increases the accuracy because the path is partly shared by both
probe packets.

The RTT of specific a RTP P that starts at s, is estimated as the difference between the
RTT of two probe packets: (1) the probe packet that returned directly from s, and (2) the
probe packet that first traversed the RTP P, returned to s,, and then went back to its original
M P using the same shortest path of the overlay network. The M P can estimate the RTT of
each probe packet as the delta between the time it sent the original probe packet and the return
time of that probe packet.

For example, in Figure 1.1 GRAMI estimates the symmet-
ric RT'T of the path sg, s4, s¢ (dotted path) by subtracting the
RTT of the symmetric path my, s3, so (solid path) from the
RTT of the symmetric path m1, s3, 2, s4, s¢ (dashed path).

Estimating the RTT by subtraction of two RTTs is very
common and was also used in [4, 5, 6]. However, in traditional Figure 1.1: Monitoring the
networks, this technique is very limited, since the path cannot symmetric RTP: s2, s4, S
be controlled.

Monitoring the RT'T of a single link is equivalent to mon-

itoring an RTP P, where P is the path back and forth on a

single link. We note that GRAMI can also monitor the links

to hosts which are not M Ps by installing virtual switches on the hosts, and monitoring them
as part of the network.

GRAMI is very efficient: First, it requires only four flow entries installed on every switch to
construct the overlay network and to enable monitoring of all the links. Any additional RTP
requires a maximum of two more flow entries on every switch in the path. Second, it uses only
a small number of probe packets; only one probe packet is sent from each M P, and the number
of return probe packets is equal to the number of measured RTPs plus the number of measured
links. Finally, the controller, which is often the most busy component in the network, is not
involved in the online RTT monitoring.

We implemented GRAMI and ran simulations on a network emulated with Mininet [7] and
based on CPgD OpenFlow virtual switches [8]. The code can be found in [9]. We demonstrated
the efficiency of GRAMI on different topologies and examined its overhead on a hardware switch
[10]. The results indicate that GRAMI adds short latency to the measurements with Mininet
(~ 12pus for every packet duplication and ~ 55us for every tagging operation) and even shorter
latency in the hardware switch (< 4us for every packet duplication and < 1us for every tagging
operation).

The remainder of this work is organized as follows. Chapter 2 elaborates on relevant back-
ground and related work. Chapter 3 provides an overview of GRAMI. Chapters 4 and 5 describe
the offline and online phases respectively, while Chapter 6 outlines additional technical details.

Chapter 7 presents the evaluation of GRAMI, and Chapter 8 concludes.

Chapter 2

Background and related work

2.1 Time measurements in the internet

Several factors might impact the experienced RTT: link latency and bandwidth, queuing delays,
overloaded network, etc. While some factors are properties of the network and remain constant,
others can rapidly change due to the network traffic, significantly affecting the measured RTT.
Therefore, the RTT must be monitored constantly in order to track changes.

Multiple innovative and sophisticated approaches tried to overcome the limited control over
routing obtainable with classic routing protocols. Most of them focus on inter-domain mea-
surements, while our work focuses on intra-domain measurements. King [11] and IDMaps [12]
are mechanisms for estimating the RTT of paths between any two hosts in the internet. Paris
Traceroute [13] creates symmetric paths in the internet by manipulating load balancers in the
monitored paths and comparing their RTT. Network Radar [14] uses network tomography [15]
and the RTT of different paths for one-way delay estimations. Still, these solutions solve prob-
lems in an environment in which the control over routing is limited, and therefore cannot monitor

the RTT of every path in the network.

2.2 Measurements in OpenFlow networks

OpenFlow enables control over the routing in the network datapath by allowing the controllers
to install flow entries on the switches. OpenFlow adds a lot of useful information with mul-
tiple counters and meters. Yet it does not supply any time measurement API as part of its
specification.

Tools like Ping and Traceroute, the common tools for RTT monitoring [16], or more recently
proposed tools such as PingMesh [17], are not suitable for OpenFlow networks, since they cannot
observe layer-2 hop and the datapath has no IP address. Therefore, researchers have tried to

create tools more suitable for OpenFlow networks. Several works [18, 19, 5] used the controller

to send probe packets and measure their delay. However, the control path has different delays
than the data path and it frequently becomes a bottleneck [20], making it harder to produce
accurate results. Van Adrichem et al. [18] received noisy results and concluded that “The
control plane is unsuitable to use as a medium for time-accurate delay measurements.” In [21]
Agarwal et al. proposed SDN Traceroute, which uses PACKET _IN messages to determine the
paths traversed by specific packets in OpenFlow networks. However, it also relies on the control
plane and therefore cannot be used for accurate RT'T monitoring.

In the closest work to ours, Shibuya et al. [6] enabled all physical links RTT monitoring
by setting paths for probe packets sent from a single point in the network, other than the
controller. Table 2.1 compares GRAMI to the solution in [6]. GRAMI can monitor the network
from any number of M Ps and balance the overload between them. Moreover, GRAMI reduces
the number of probe packets sent from the M Ps per active measurement to a single probe packet
from each M P. Finally, GRAMI is more resource efficient, it requires only four flow entries on
every switch in order to monitor all the links, and it requires two additional flow entries to
monitor any additional RTP that traverses through this switch. In comparison, the solution in
[6] requires the number of flow entries on the switches to be proportional to the number of links
in the network for monitoring the links only. To the best of our knowledge, GRAMI is the first

infrastructure that enables RTT monitoring of any RTP.

MPs Probe packets Flow entries Measuring

GRAMI | Any k | Send k, Return n +r 44 2r Links & RTPs

6] 1 Send n, Return n O(n) Links Only

Table 2.1: GRAMI vs. Shibuya et al.’s solution for network with n links and r RTPs.

2.3 Estimating one-way delay

In order to accurately measure one-way delay, a time-stamped packet should be sent from source
to destination. For example, Consistent NetFlow [22] sends time-stamped packets between
routers. The main problem with this approach is time-synchronization, which adds a lot of
complexity to the network.

To overcome this problem, many approaches halved the RTT of the selected path. As
discussed in [23], the accuracy of this approach is highly dependent on path symmetry and
symmetric load in both directions of the path. GRAMI adds small but asymmetric overload.

Therefore it is not suitable for one-way delay estimation.

Chapter 3

GRAMI Overview

3.1 Goal and considerations

Our main goal is to create a generic, scalable and efficient infrastructure that enables RTT
monitoring for any RTP and for all the links in the network. To achieve this goal, GRAMI

meets the following criteria:

1. Compatibility: GRAMI should work with every OpenFlow network as is. Therefore,
it makes no assumptions on the network topology and does not require changes to the

OpenFlow protocol or to the switches.

2. No Time-Synchronization: Time-synchronization adds a lot of complexity to the net-

work. Therefore, GRAMI does not count on time-synchronization.

3. Active Probing: Passively sampling packets in the vantage points is not sufficient for

covering every path in the network. Thus, GRAMI uses active probing.

4. Minimal Controller Involvement: As explained in [18], the control plane is not suit-
able for time-accurate measurements. In addition, the control path frequently becomes a
bottleneck [20]. For that reason, the controller does not participate in RTT monitoring in

GRAML

5. Flexibility: GRAMI should be flexible. Thus, it can turn any vantage point into an M P

and it can monitor from any number of M Ps.

6. Resource Efficiency: First, the flow table capacity is often limited and multiple flow
entries can degrade the switch performance [24]. Therefore, GRAMI installs only a small
number of flow entries on the network switches. Second, overloading the network may
decrease the accuracy of the measurements. Hence, GRAMI sends only one probe packet

from every M P.

7. Accuracy: GRAMI builds the overlay network and uses packet duplication to optimize

the accuracy of the results.

8. Dynamic Updates: Configurations are a burden to the network operators. Therefore,

GRAMI automatically adapts to dynamic network modifications.

3.2 The workflow of GRAMI

Offline Calculation - Controller Application

Derive and
Compute the Calculate the ;
MPlocation set overlay network — mszﬂuig?‘

Online RTT Monitoring - MPs
RTT /—\ Probe packet

calculations distribution

O
rsssssssssEssssss s s E e

Figure 3.1: The workflow of GRAMI

GRAMI allows the user to select any RTP in the network, and the desired number of M Ps.
Then, GRAMI works in two phases: an offline calculation phase, in which the controller applica-
tion sets the routing for the probe packets, and an online RT'T monitoring phase in which each
M P sends probe packets for RTT monitoring (see Figure 3.1). The offline calculation phase
contains several steps: in the beginning, the controller application calculates the M P location
set, which optimizes the overlay network. Afterwards, according to the locations of the M Ps,
it computes the shortest path towards every switch and link in the network, and calculates the
overlay network. Eventually, the controller application translates the overlay network and the
given RTPs into flow entries, and installs them on the OpenFlow switches.

The M Ps are in charge of the online RTT monitoring phase. Each M P periodically sends
a single probe packet. The probe packets are duplicated, distributed and tagged within the
switches according to the flow entries. All of the probe packets return to the M P from which
they originated. For each of the returned probe packets, the M P extracts the tags in order
to identify the path the probe packet traversed. Eventually, it uses the RTTs of the returning
probe packets to estimate the RTTs of all the links and specified RTPs.

Once in a predefined time, a summary of the results is sent by the M Ps to the controller or to

any application that might require the information. In the case of dynamic network modifications

such as link failure or the addition of a new switch, the overlay network is recalculated and the

flow entries are reinstalled.

Chapter 4

GRAMI offline phase

The offline phase is composed of three steps: (1) computing the M P location set, (2) calculating
the overlay network, and (3) deriving and installing the corresponding flow entries on the network
switches. These flow entries ensure that the probe packets will traverse the network according to
the overlay network and RTPs. In this Chapter we elaborate on steps (1) and (2). For the ease
of reading, we explain step (3) in Section 6.2, after elaborating on the online phase in Chapter

5.

4.1 Computing the M P location set

The controller application learns about the network topology by using a topology discovery
application. It receives as an input the desired number of M Ps, k, and in some cases, a fixed
set of vantage points to be M Ps. The controller application completes this set to a set of size k
by computing the locations of the rest of the M Ps. The M P location set should minimize the
maximal depth (i.e., the number of links from the closest M P). GRAMI selects the location set
that balances the number of links monitored by each M P, as long as it does not increase the
depth of any link.

This type of optimal location set problem is known to be N P-hard [25]. GRAMI chooses the
best location set among those found by two algorithms: farthest-first traversal greedy algorithm
[25]! and local-search heuristic?. This approach bounds the maximal link depth to be 2d + 1

where d is the maximal link depth in the optimal solution.

LGRAMI uses the given set or chooses the first M P randomly and then iteratively adds the farthest M P in

every iteration.
2GRAMI uses the given set or starts with an empty set and then iteratively adds the optimal local M P in

every iteration.

4.2 Calculating the overlay network

The overlay network sets a singular shortest path from every link in the network to its closest

MP (see Figure 4.1).

Figure 4.1: (a) Example topology of network switches.
(b) The overlay network after connecting M P m; to s3.

(c) The overlay network after connecting M P my to s3 and M P mg to sg.

In case of a single M P, the overlay network is a Direct Acyclic Graph that covers all the
links in the network.

To construct the overlay network for a single M P, GRAMI first builds a shallow spanning
tree, i.e., a shortest path spanning tree. The links of the spanning tree are marked as solid links.
We denote the single ingress solid link of every switch as its parent link. Then GRAMI adds the
rest of the links and marks them as dashed links. In order to minimize the depth of the dashed
links, GRAMI sets the direction of the dashed links from the switch with the lower depth to the
switch with the higher depth. Note that the difference between these depths is at most one.

If there are multiple M Ps, GRAMI divides the links between them so that every link is
monitored by its closest M P. If there are several closest M Ps, GRAMI tries to balance the
number of links connected to each one. In this case, the overlay network is composed of multiple
DAGs with the M Ps as their starting vertices. The solid links create a single path to every
switch from exactly one M P and the dashed links cover the remaining links. This overlay

network is calculated in four steps (see Figure 4.2):

1. The links are divided between the M Ps, creating k connected sub-networks. Every link is
connected to its closest M P. In case of a tie, the link is added to the M P that has fewer

links in its DAG. Note that in this step, a switch can be covered by multiple M Ps.
2. An overlay network with a single M P is calculated for every sub-network.

3. All the sub-networks are merged into a single network.

10

4. For every switch with multiple parent links, the parent link with the minimal depth remains

solid and the rest of the ingress links become dashed.

Step 1 Step 2

Figure 4.2: calculating the overlay network for two M Ps.

GRAMI automatically adapts to dynamic modifications caused by failures or additions of
network components. Those modifications are detected by the controller, either by packets that
arrive at the controller to inform it that a new switch was added (OFTP_HELLO message),
or by using a topology discovery application. After the modification has been detected, the
controller application recalculates the overlay network, derives the flow entries, and installs

them without any manual configuration.

11

Chapter 5

GRAMI online phase

In the online phase, the M Ps work in measurement rounds. In every round, each M P sends a
single probe packet with the measurement round number as payload. This number is used to
match the sent probe packet to the return probe packets. The sent probe packet is duplicated
and tagged within the switches and distributed over the overlay network. The duplication
mechanism does add a short latency to the processing time in the switches (see Section 7.2);
however, it also obviates the need for sending multiple probe packets.

The probe packets cover all the links and RTPs, and return to their original M P. Each M P
extracts the tags and the measurement round number from the returning probe packets, and
saves their RTT as the time elapsed since sending the probe packet with the same measurement
round number. In this way, the M P can calculate the RTT of every link and RTP in its sub-
network. In this Chapter, we first explain the probe packet distribution and then the RTT

calculations.

5.1 Probe packet distribution over the overlay network

The probe packet distribution is determined by the probe packet’s tags while arriving at a
specific switch. The tags are encoded in the probe packet headers (see details in Section 6.1).
According to the headers and the ingress port, the switch matches the probe packet to a specific
flow entry and executes the corresponding actions. In this section we explain the general idea
behind the probe packet distribution and in Section 6.2 we describe the flow entries.

Each probe packet contains a directionFlag that indicates the direction of distribution.
Probe packets that traverse the overlay network in the direction of the links are denoted as
forward probe packets. The return probe packets are denoted correspondingly. The M Ps send
only forward probe packets.

To ensure coverage of all the links, probe packets are distributed over the overlay network as

follows. When a forward probe packet arrives at switch s; from switch s;, where the link from s;

12

to s; is the parent link of s; in the overlay network, s; duplicates the probe packet and distributes
the clones through all of its egress links according to the overlay network. Note that the egress
links can be either solid or dashed. In addition, s; sends a return probe packet back to s;. The
return probe packet is tagged with the IDs of both switches (s;, s;) to identify the last link and
its direction. Additionally, the probe packet also contains a ParentFlag that indicates whether
the link is a parent link. In this case, the ParentFlag=True in the return probe packet.

When a forward probe packet arrives at a switch s; from switch s;, where the link from s; to s;
is not s;’s parent link, s; only sends the return probe packet back to s; with ParentFlag=False.
This mechanism ensures that every link and switch will be covered, but only once.

When a return probe packet arrives at a switch, the switch sends it through its parent link.
The return probe packet thus traverses the shortest path back to its original M P (note that the
return path is composed of solid links only). Figure 5.1 shows the distribution process over the

example network.

Figure 5.1: Step-by-step distribution process for the network links. The black arrows represent
forward probe packets and the white arrows represent return probe packets. For convenience,

the steps are presented synchronously.

The RTPs must be preconfigured in the network so that the probe packets will be able to
traverse them. When a forward probe packet arrives at a switch s, from its parent link, s, sends,
in addition to the aforementioned clones, a single probe packet to each RTP P that starts at

sp. Each probe packet contains an RT'PFlag indicating whether the packet measures an RTP

13

or a link. The probe packets that measure RTPs are tagged with RT PFlag=True (for links
RTPFlag=False). Additionally, the probe packets are tagged with the ID of s, and the ID of
the RTP P. The switches along the RTP use the tag P to send the probe packet along P until
it returns to s,. Then, s, tags the probe packet as a return probe packet, and sends it back to
the M P via its parent link.

Figure 5.2 illustrates the process of measuring an asymmetric RTP P that starts at so. In
step 1, probe packets arrives on the same path as the corresponding probe packet in steps 1-2
in Figure 5.1. In steps 2-4, sy sends the probe packet to traverse P. In step 5, so identifies
the probe packet that returns from P and sends it back to the M P in the same path as the
corresponding probe packet in steps 5-6 in Figure 5.1. The process focuses on traversing P and

ignores the duplication according to the overlay network.

Steps 2-4

Figure 5.2: Monitoring RTP of the asymmetric RTP P={s2, s4, 83, s2}. The numbers on the
arrows represent steps in a synchronous network. The black arrows represent forward probe
packets, the dotted arrows represent probe packets traversing P, and the white arrows represent

return probe packets.

5.2 RTT Calculations

In every measurement round, each M P sends a single forward probe packet but receives multiple
return probe packets.! The M Ps have a configurable measurement round timeout; probe packets
that exceed this timeout will be considered lost.

As explained, the return probe packets contain the information of a link or that of an RTP.
In the case of a link, the return probe packet contains an RT PFlag=False. The RTT of the

link from s; to s; is equal to the RT'T of the probe packet tagged with (si,sj)2 minus the RTT

We assume that under similar conditions, similar packets experience similar processing time in the switches.
However, for specific scheduling techniques such as: Virtual Output Queues or Active Queue Management, the
time in queue may vary for different ingress ports; other techniques should be used in that case. We moreover

assume that middleboxes will use consistent routing and will not change the tagging of the probe packets.
2The probe packets are tagged on their way back; therefore, (si,s;) represents the link from s; to s; in the

14

of the probe packet that measured the shortest path to s;, which is the RT'T of a probe packet
that is tagged with (sj,s;) and parentFlag=True.

In the case of an RTP, the return probe packet contains an RT PFlag=True and the 1Ds
(sp,P), where s, is the first switch in the RTP P. The RTT of P is equal to the RTT of the
probe packet tagged with (s,,P) minus the RTT of the probe packet that measured the shortest
path to s.

Note that the M P does not need to receive the network topology from the controller ap-
plication to perform RTT calculations. However, during topology changes, some of the probe
packets might traverse unexpected paths, possibly leading to calculation errors. Therefore,

unstable networks require a tight connection between the controller and the M Ps.

overlay network.

15

Chapter 6

GRAMI - technical details

In this chapter we describe the tagging mechanism and the flow entries installed on the network

switches.

6.1 Tagging mechanism

The controller application selects unique IDs for the selected RTPs, unique IDs for the switches,
and a NULL ID to indicate an empty ID value. Note that probe packets with RTP information
contain two IDs; the RTP ID and the first switch ID. Probe packets with link information
contain two IDs as well; those of the switches at the link’s endpoints. Thus, GRAMI uses two
fields of IDs; (ID1,1D2), to enable tagging of RTPs or links according to the RT' PFlag.

To enable the tagging only in the desired switches, GRAMI uses SetIDFlag to indicate
whether the IDs should be tagged (i.e., at least one ID has not yet been tagged).

GRAMI uses the following tags (summarized also in Table 6.2):

1. DirectionFlag indicates whether the direction of the probe packet is forward or return.

It is used by the switches to match the probe packets to a flow entry.

2. SetlI DFlag indicates whether the packet still has to be tagged with an RTP ID or a switch

ID. It is used by the switches to match the probe packets to a flow entry.

3. ParentFlag indicates whether the last link in the path was a parent link. It is used by
the M Ps for RTT calculations.

4. RTPFlag indicates whether the information in the return probe packet is related to an

RTP or to a link. It is used by the M Ps for RTT calculations.

5. (ID1,1D2) are used by the M Ps for RTT calculations. If RT PFlag=False, the IDs are
the endpoints of a link; otherwise, 1D2 is the ID of the RTP, and ID1 is the ID of the

16

first switch in the RTP. Note that 1D2 is also used by the switches to match the probe
packet and forward it along the RTP.

Since the probe packets are created in the M Ps and used only for RT'T monitoring, they can
be independent of a specific protocol. Therefore, GRAMI can add any payload, and select any
field for tagging, as long as the OpenFlow version supports tagging and matching for that field.
We implemented GRAMI with OpenFlowl.3 and used ETH_-TYPE (16 bits) and two VLAN
headers (12 bits each). The DirectionFlag and the SetI DFlag were encoded by four different
ETH_TYPE values that are not correlated with any protocol. The ParentFlag, RI'PFlag and
ID1 were encoded in one VLAN header. I D2 was encoded in the other VLAN. In I D1, 10 bits
were used for switch ID or the NULL ID. In D2, 12 bits for switch ID, RTP ID or the NULL
ID.! Hence, the current implementation is limited to (2!° —1)=1023 switches and (2'2 —1)=4095
RTPs, but choosing other fields for tagging is possible for bigger networks.

VLAN headers are commonly used for tagging in OpenFlow networks [26]. However, tagging
with VLANSs has the overhead of using the ”PUSH_VLAN” and "POP_VLAN” actions, in addi-
tion to setting the field with the relevant tag. In the P4 language (also referred as ” OpenFlow
2.0 API”) [27], the user can define specific headers for tagging, and only set these headers in
order to tag the packet. Implementing GRAMI with the P4 language should thus significantly

reduce the overhead caused by the tagging mechanism.

6.2 The flow entries

The controller application calculates the overlay network and derives the corresponding flow
entries. In addition, it finds the relevant ingress and egress ports of every switch along each
of the selected RTPs. Then, the controller application installs the flow entries on the network
switches.

Table 6.1 describes in detail all the flow entries that implement the distribution, duplication,
and tagging mechanisms. If a probe packet matches several flow entries, the one with the highest
priority will be executed.

The purpose of flow entries 1-4 is to distribute the probe packets according to the overlay
network; therefore, these flow entries are installed on all the switches. The controller application
installs flow entries 5-6 for every selected RTP. The purpose of these flow entries is to distribute
the probe packets over a specific RTP P which starts in switch s,. Therefore, these flow entries
are installed only on switches along P. Flow entry 5 is installed on every switch in P except s,
in order to create P (it can be installed twice if the switch appears twice in P). Flow entry 6 is

installed on s, so the probe packet will return to the M P after traversing P.

1ID2 requires at least log(mazx(r,n) + 1) bits for a network with n switches and » RTPs.

17

[NoJ Purpose [Name | Swiltch | Match | Priority] Action
1 Traverse Distribute | All i. DirectionF'lag=Forward 2 1. Duplicate the probe packet and send the clones to all the egress
the ii.Set! DFlag=True ports with no tag changes.
overlay iii.Ingress port = parent port 2. Send probe to the ingress port with DirectionFlag=Return,
network. Setl DFlag=True, parentFlag=True and I D1= ID of s.
3. For every RTP P which starts in s, send a probe packet to the
first link in P with RT PFlag=True, DirectionFlag=Forward,
Set] DFlag=False, I D1=ID of s and ID2=RTP ID of P.
2] Do not All i. DirectionF'lag=Forward | 1. Send probe to the ingress port with DirectionFlag=Return,
dis- ii.SetI DFlag = True Setl DFlag=True, parentFlag=False and I D1= ID of s.
tribute (Ingress port # parent port)
[3] Return All l.DirectionFlag=Return 1 1. Send to the parent port with Set] D Flag=False and
And Tag ii.SetI DFlag=True ID2 =1D of s.
4] Return All i. DirectionF'lag=Return | 1. Send to parent port with no tag changes.
No Tag ii.Set! DF'lag=False
5 Traverse | Traverse | Not i. DirectionF lag=Forward 1 1. Forward according to the RTP ID and the ingress port value to the
RTP P P Sp ii.Set] DFlag=False next link in P through specific egress port with no tag changes.
which iii./D2 = RTP ID of P
starts in iv. Ingress port value
[6 | switch Return Sp i. DirectionF'lag=Forward | 1. Send to the parent port with DirectionFlag=Return.
Sp. From P | only ii.Set] DF'lag=False
iii. [D2=RTP ID of P

Table 6.1: Flow entries installed on switch s. The egress ports and parent ports are derived

from the overlay network. The ingress port is the port from which the packet entered.

Below we describe the life-cycle of a probe packet. In parentheses we note the state of the

probe packet according to Table 6.2 and the flow entry number according to Table 6.1.

DirectionFlag|SetIDFlag|ParentFlag| RTPFlag| ID1 ID2
)] €9) €9) (1) [(ogn+1)) |(log(max(r.,n)+1))
(@) Forward True False False NULL NULL
(b) Return True True\False | False |SwitchID NULL
(© Return False True\False | False |SwitchID| SwitchID
(d)] Forward False False True |SwitchID RTP ID
(e) Return False False True |SwitchID RTP ID

Table 6.2: The tagging of a probe packet in every possible state. We note in parentheses the

number of bits required for each tag in a network with n switches and r RTPs.

The forward probe packet is sent from the MPs with (ID1,ID2)=(NULL,NULL) and
SetIDFlag=True (a). When it arrives at a switch from its parent link, the switch distributes the
probe packet to its egress links (a,1) and sends a return probe packet through its ingress port after
tagging I D1 and ParentFlag=True (b,1). If a forward probe packet with SetI DFlag=True ar-
rives at a switch from a link which is not its parent link, the switch tags I D1, ParentFlag=False,
and sends a return probe packet (b,2). The first switch on the return path to the M P tags D2
and sets SetI DFlag=False (c,3), so the probe packet will not be tagged until it returns to the
MP (c/4).

When the probe packet start traversing an RTP P that originates in a switch s,, s, sets
RTPFlag = True, (ID1,1D2)=(sp, P) and SetIDFlag=False (d,1). The packet is still a for-

ward probe packet but it will not be tagged. The switches along the P forward the probe packet

18

until it returns to s, (d,5). Then, s, sets DirectionFlag=Return and the probe packet returns

to the M P (e,6) along the shortest path.

19

Chapter 7

Evaluation and discussion

We tested GRAMI on a network emulated with Mininet and based on CPqD OpenFlow virtual
switches controlled by a single Ryu controller [28]. All links were set with a 100M bps bandwidth
and 20ms latency. The only traffic in the network was OpenFlow communication between the

controller and the switches.

7.1 Building the overlay network

No. Name Links | Switches | Max Depth | Calc Time (ms)
1 GetNet 8 7 3 2.82
2 Peerl 20 16 4 11.79
3 Airtel 37 16 3 15.37
4 | BT Europe 37 24 3 30.02
5 BICS 48 33 6 55.39
6 ATT 57 25 4 47.89
7 GEANT 61 40 5 87.49
8 | Deutsche... 62 39 5 101.13
9 Forthnet 62 62 5 106.48
10 BTN 65 53 6 120.8

Table 7.1: Calculation times of the overlay network for various topologies and a single M P.

We tested GRAMI on topologies taken from Topology Zoo [29]. In all of the tested topologies,
GRAMI successfully monitored the RTT of all the links in the network and the RTT of different
RTPs we preconfigured. Table 7.1 describes the topologies, the overlay network calculation time,
and the maximal depth when a single M P is placed in the optimal location. As shown in the

table, the calculation time tends to grow when the network size and maximal depth increases.

20

Installing the flow entries took an additional 2.7ms per switch.

In the following tests we used topology 5. In every test we conducted 200 measurement rounds
and sent a single forward probe packet from every M P with 1 second interval between rounds.
Note that Mininet is a virtual environment not suitable for measuring time or performance
accurately. However, it is a proof of concept and gives us a sense on the impact of different
network parameters. In the next sections, we try to estimate GRAMI’s overhead in Mininet
followed by an assessment of how different network parameters might affect the accuracy of the

RTT measurements.

7.2 Overhead analysis

GRAMI has the overhead of duplication and tagging within the switches. We measured the
overhead in our emulated Mininet network with virtual switches and found that the average
latency for adding a single VLAN header tag is equal to ~ 55us, and the average latency for
a single packet duplication is equal to ~ 12us. To estimate the overhead of GRAMI for paths
with different lengths, we selected three switches with depths of 2-4 in topology 5. Then, we

installed flow entries to set the shortest symmetric path toward each switch.

—_

=z —— GRAMI n
5 08 | e Forwardin 5 GRAMI_
E B g E 08 |....... Forwardmg
2 2
206 Z 06
: :
E04 €04
@ s
[a
E 02 =02
&) © .
0 : 0 .
40 41 42 43 44 45 60 62 64 66
RTT(ms) RIT(ms)
(a) Path composed of two links (b) Path composed of three links
1
E — GRAMI
208 | Forwarding
5
5 0.6
Q
E 04
I5
0.2
N
O
0
80 82 84 86 88 90

RTT(ms)

(¢) Path composed of four links

Figure 7.1: GRAMI vs. forwarding monitored RTT CDFs for paths composed of different

number of links.

21

We monitored the RTT of those paths with simple forwarding (the packets were forwarded
between the switches with no further actions) and with GRAMI. Figure 7.1 compares the moni-
tored RTT and shows that GRAMI adds small overhead to the results, which increases for longer
paths. Note that the same link latency was emulated for all the links in the network. As a result,
the probe packets that were sent from a certain switch to its egress links returned to that switch
within a short time of one another. Since in our emulated network tagging takes much longer
than duplication, each probe packet had to wait in the switch queue until the switch tagged the
probe packets that preceded it in the queue. Thus, even though the mentioned latencies were
relatively small, they accumulated and increased with the length of the measured path.

We measured these mentioned latencies for NoviFlow Novikit 250 switch [10]. The packet
duplication took less then 4us and tagging took less than 1us. We expect the overhead to be

significantly lower also on other hardware switches.

7.3 Link depth

In order to estimate the impact of depth on the accuracy of the measurements, we calculated the
standard deviation of the RTT measurements for every link. The standard deviation provides
a good estimation of measurement noise. As Figure 7.2 shows, for deeper nodes, the RTT

measurements tend to be more noisy.

0.8

= =
[

Avg stdev (ms)
o O
= LN
.
TN

= 0 2§
— ba e

=

1 2 3 4 5 6
Depth of measured link

Figure 7.2: Scatter plot of the average standard deviation in the RTT measurements as a function

of the link’s depth. Every x is a link in the network.

7.4 MP location set

To check how the location of an M P affects the monitored RTT, we used GRAMI to find the

optimal and worst locations to place a single M P. Note the optimal location for a single M P

22

can be found in polynomial time.

Location | Avg depth | Max depth | Avg RTT(ms) | Avg Stdev(ms)
Optimal 3.91 6 21.88 0.75
Worst 7.125 9 21.97 1.2

Table 7.2: Optimal vs. worst location for a single M P.

Table 7.2 shows that the optimal location reduces the depth of the links, GRAMI’s overhead,
and measurement noise.

We also monitored all the links in the network for 1-6 M Ps connected to the network. As
shown in Figure 7.3, the average RTT monitored by GRAMI decreased as the number of M Ps
grew. The dashed line represents the link latency that was emulated for all the links in the
network. Since the RTT also includes the processing time in the switches, the average RTT

cannot reach the dashed line. However, as it gets closer, the overhead of GRAMI decreases.

23
"o & —e— GRAMI
e ---@-.« Round-trip latency
w 22
— 215 ~ —a
[—.
P 2]
=1 ¥]
Z 205
2{} [TITEETT RIS TTETT TP TEE [EET TR TSR EY EFTTTEE TR ESY ERTTTETTT TRy |
19.5

1 2 3 4 5 6
Number of MPs

Figure 7.3: Average RTT of the links in the network as a function of the number of M Ps.

Figure 7.4 shows that the measurements tend to be less noisy as the number of M Ps in-
creases. We assume these more stable results are due to the use of multiple M Ps, which reduces

the average depth in the network.

23

Avg stdev (ms)
=

1 2 3 4 5 6
Number of MPs

Figure 7.4: Average standard deviation in the RTT measurements of all the links as a function

of the number of M Ps.

7.5 Sensitivity to network conditions and dynamic changes

We tested how GRAMI responds to dynamic changes in the network by selecting a specific link

and monitoring its RTT for 15 seconds with a 200ms interval between probe packets.

250

RTT (ms)
= @ 8
= = =

Lh
=

0 — e |
0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

Figure 7.5: RTT over time for a single link that was overloaded at known times. In the solid

segment, we overloaded the network with 57Mbps, as opposed to 54Mbps in the dotted segment.

First, we tested whether GRAMI can detect a flooded link. For that reason, we used the
Ipref tool to overload the specific link with known data rates as shown in Figure 7.5. The graph
shows that GRAMI monitored an increasing RTT during overloading. Moreover, the graph
shows that GRAMI immediately detected when we stopped overloading the link.

24

35 = ——link latency

R
tn

[
L

RTT (ms)

10

0 2000 4000 6000 8000 10000 12000 14000
Time (ms)

Figure 7.6: RTT over time for a single link with dynamic changes.

In addition, we tested whether GRAMI can detect changes in the latency of a link or link
failure. As Figure 7.6 shows, GRAMI immediately detected the change in the link’s latency,
and when the link failed, it did not receive a return probe packet that measured the link, and
thus could not monitor the RTT. As the graph shows, GRAMI did not immediately identify the
recovery of the link. In fact, it took the controller application 89.24ms to detect the recovery and

calculate the new overlay network, and 188.11ms to install the flow entries on all the switches.

25

Chapter 8

Conclusions

We introduced GRAMI, an infrastructure that enables RTT monitoring all the links and of
all the RTPs preconfigured in OpenFlow networks. GRAMI is easy to operate and supplies
important information for network operators. Moreover, GRAMI is resource efficient and does
not involve the controller in the online RTT monitoring. This work demonstrates the power of
OpenFlow and SDN concepts, and uses the new capabilities of OpenFlow to enable accurate

RTT monitoring in granularity and stability that could not be achieved in traditional networks.

26

Bibliography

1]

C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From paris to tokyo: On the suitability
of ping to measure latency,” in Proceedings of the 2013 conference on Internet measurement

conference. ACM, 2013, pp. 427-432.

M. Crovella and B. Krishnamurthy, Internet measurement: infrastructure, traffic and ap-

plications. John Wiley & Sons, Inc., 2006.

O. N. Foundation, “Openflow switch specification (version 1.3.0),” 2012.
[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow /openflow-spec-v1.3.0.pdf

A. B. Downey, “Using pathchar to estimate internet link characteristics,” in ACM SIG-
COMM Computer Communication Review, vol. 29, no. 4. ACM, 1999, pp. 241-250.

C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V. Madhyastha, “Software-
defined latency monitoring in data center networks,” in Passive and Active Measurement.

Springer, 2015, pp. 360-372.

M. Shibuya, A. Tachibana, and T. Hasegawa, “Efficient performance diagnosis in openflow

networks based on active measurements,” ICN 2014, p. 279, 2014.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks. ACM, 2010, p. 19.

“’cpqd openflow software switch”, http://cpqd.github.io/ofsoftswitch13/.”
“https://github.com/alonataril /grami.”

"noviflow novikit 2007, http://www.nve.co.jp/pdf/product/noviflow/
novikit250datasheet.pdf.

K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency between arbitrary
internet end hosts,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment. ACM, 2002, pp. 5-18.

27

[12]

[13]

[14]

[15]

[16]

[17]

22]

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “Idmaps: A global
internet host distance estimation service,” Networking, IEEE/ACM Transactions on, vol. 9,

no. 5, pp. 525-540, 2001.

B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced paths in the in-
ternet,” in Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 149-160.

Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network radar: tomography from round
trip time measurements,” in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement. ACM, 2004, pp. 175-180.

Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link

data,” Journal of the American Statistical Association, vol. 91, no. 433, pp. 365-377, 1996.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey on network troubleshoot-
ing,” Technical Report Stanford/TR12-HPNG-061012, Stanford University, Tech. Rep.,
2012.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen et al., “Pingmesh: A large-scale system for data center network latency measure-
ment and analysis,” in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication. ACM, 2015, pp. 139-152.

N. L. Van Adrichem, C. Doerr, F. Kuipers et al., “Opennetmon: Network monitoring in
openflow software-defined networks,” in Network Operations and Management Symposium

(NOMS), 2014 IEEE. IEEE, 2014, pp. 1-8.

K. Phemius and M. Bouet, “Monitoring latency with openflow,” in Network and Service

Management (CNSM), 2013 9th International Conference on. IEEE, 2013, pp. 122-125.

A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elastically scaling up sdn
control-plane using vswitch based overlay,” in Proceedings of the 10th ACM International
on Conference on emerging Networking Fxperiments and Technologies. ACM, 2014, pp.
403—-414.

K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing sdn forwarding
without changing network behavior,” in Proceedings of the third workshop on Hot topics in

software defined networking. ACM, 2014, pp. 145-150.

M. Lee, N. Duffield, and R. R. Kompella, “Opportunistic flow-level latency estimation using

28

[28]

[29]

consistent netflow,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 139-152,
2012.

O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using network-wide mea-
surements,” IEEE/ACM Transactions on Networking (TON), vol. 14, no. SI, pp. 27102724,
2006.

A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching: Data plane perfor-
mance,” in Communications (ICC), 2010 IEEFE International Conference on. IEEE, 2010,

pp. 1-5.

b

T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theoretical

Computer Science, vol. 38, pp. 293-306, 1985.

S. Narayana, J. Rexford, and D. Walker, “Compiling path queries in software-defined net-
works,” in Proceedings of the third workshop on Hot topics in software defined networking.

ACM, 2014, pp. 181-186.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Ta-
layco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87-95,
2014.

"ryu sdn framework”, http://osrg.github.io/ryu-book/en/ryubook.pdf.

"the internet topology zoo”, http://www.topology-zoo.org/.

29

%N

nvNa DIv 0*7170n 1 7y (Round-Trip Times) aiwil 170 11avY NIvTIng npin ntn 1101
NTY NI DXI9IN NO'YN .NYIN NMIAYN [IDN1 YN NIYYA |INN9 IX? 21'N yT'a 790N
2NN 72V NU7YUN L NI'OX7P NINYWIA .NWI NINNQ DITIRM DR T2 NIYTIN DN KD 17X DnT

YN NN 0T 7D DR 1017 NMYWOR M7 D7, TIRN 1722 nwNa

Dy .NYN2 AN 7y nuwin Nk vwon Software Defined Networking 7w mwTnn vo0117N
WD DT 11072 ndn poon X7 ,SDN-n 2171009 fan yioin 7ipionen ,OpenFlow Nt
nnwn — GRAMI nx arxai nwna aimtia vi7w? OpenFlow 7w NI DK 9201 INIX, 1T NTIAYA
NIYTIN NN N7IYENTTA DITR 10w DA DT N GRAMI .nwna RTTs nT 7 nunwnin
7V "N2Iw NN *ayn 71700 70 1y RTT 79 2T NNWOKRNA 17X NIYTIN C2M0PK (91K NPT

W01 D170 TR ' YW wnnwnn T

nYNd 2N 7D W npnry 7271 Nimivn YaIR WAIT XN 0faxwna 7' nirn 0im GRAMI
vIT GRAMI ,wnnwnn 1niaw "2aun 71700 75 1y .nwna 0770 D 7w RTTs 77 nnona
7¢ “mnm 1v0n1 wnnun GRAMI D 7y ANt .nwna am 73 7Y NNy Nivson Nmiva My Ty

QTN 7 controllern 7w nixiyn wAIT X710 T DIV TIN

1217 ,2WNNT SYTAY TR OXR 0921 T2 7% Y 'D11D HW N27T702 AV Y amay
J1°9%07 N0

“+*x
*

TN DN 10D "2 *IMNNY AN
awnnawtny | MYININ

«

Rl

PN MMINNAT TN

AWNNAT SYTAY TN 9OX 190-N"2
Mpnn 2%0n - (M.SC.) "1w ARIND N300

nnwna 5y RTT 7100
OpenFlow

ighte
LR R

21901m2 M.ScC. 71011 RN NPap awh MWOITR PR DWAINT 31N NTIAY
TO9XI SMINNAT 12747 ,AWNNT PYTNRY TR SOR 190 N922 pnan

2016 X

