

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

M.Sc. program - Research Track

Efficient Round-Trip Time

Monitoring in OpenFlow Networks

by

Alon Atary

M.Sc. dissertation, submitted in partial fulfillment of the requirements

for the M.Sc. degree, research track, School of Computer Science

 The Interdisciplinary Center, Herzliya

January 2016

This work was carried out under the supervision of Prof. Anat Bremler-Barr

from the Efi Arazi School of Computer Science, The Interdisciplinary

Center, Herzliya.

Acknowledgments

This research was supported by the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 259085, and by

the Neptune Consortium, administered by the Office of the Chief Scientist of the Israeli Ministry

of Industry, Trade, and Labor.

i

Abstract

Monitoring Round-Trip Time provides important insights for network troubleshooting and traffic

engineering. The common monitoring technique is to actively send probe packets from selected

vantage points (hosts or middleboxes). In traditional networks, the control over the network

routing is limited, making it impossible to monitor every selected path.

The emerging concept of Software Defined Networking simplifies network control. How-

ever, OpenFlow, the common SDN protocol, does not support RTT monitoring as part of its

specification. In this work, we leverage the ability of OpenFlow to control the routing, and

present GRAMI, the Granular RTT Monitoring Infrastructure. GRAMI uses active probing

from selected vantage points for efficient RTT monitoring of all the links and any round-trip

path between any two switches in the network.

GRAMI was designed to be resource efficient. It requires only four flow entries installed

on every switch in order to enable RTT monitoring of all the links. For every round-trip path

selected by the user, it requires a maximum of two additional flow entries installed on every

switch along the measured path. Moreover, GRAMI uses a minimal number of probe packets,

and does not require the involvement of the controller during online RTT monitoring.

ii

Contents

1 Introduction 1

2 Background and related work 4

2.1 Time measurements in the internet . 4

2.2 Measurements in OpenFlow networks . 4

2.3 Estimating one-way delay . 5

3 GRAMI Overview 6

3.1 Goal and considerations . 6

3.2 The workflow of GRAMI . 7

4 GRAMI offline phase 9

4.1 Computing the MP location set . 9

4.2 Calculating the overlay network . 10

5 GRAMI online phase 12

5.1 Probe packet distribution over the overlay network 12

5.2 RTT Calculations . 14

6 GRAMI - technical details 16

6.1 Tagging mechanism . 16

6.2 The flow entries . 17

7 Evaluation and discussion 20

7.1 Building the overlay network . 20

7.2 Overhead analysis . 21

7.3 Link depth . 22

7.4 MP location set . 22

7.5 Sensitivity to network conditions and dynamic changes 24

8 Conclusions 26

iii

List of Figures

1.1 Monitoring the symmetric RTP: s2, s4, s6 . 2

3.1 The workflow of GRAMI . 7

4.1 (a) Example topology of network switches.

(b) The overlay network after connecting MP m1 to s3.

(c) The overlay network after connecting MP m1 to s3 and MP m2 to s6. 10

4.2 calculating the overlay network for two MPs. 11

5.1 Step-by-step distribution process for the network links. The black arrows repre-

sent forward probe packets and the white arrows represent return probe packets.

For convenience, the steps are presented synchronously. 13

5.2 Monitoring RTP of the asymmetric RTP P={s2, s4, s3, s2}. The numbers on the

arrows represent steps in a synchronous network. The black arrows represent

forward probe packets, the dotted arrows represent probe packets traversing P ,

and the white arrows represent return probe packets. 14

7.1 GRAMI vs. forwarding monitored RTT CDFs for paths composed of different

number of links. 21

7.2 Scatter plot of the average standard deviation in the RTT measurements as a

function of the link’s depth. Every x is a link in the network. 22

7.3 Average RTT of the links in the network as a function of the number of MPs. . 23

7.4 Average standard deviation in the RTT measurements of all the links as a function

of the number of MPs. 24

7.5 RTT over time for a single link that was overloaded at known times. In the solid

segment, we overloaded the network with 57Mbps, as opposed to 54Mbps in the

dotted segment. 24

7.6 RTT over time for a single link with dynamic changes. 25

iv

List of Tables

2.1 GRAMI vs. Shibuya et al.’s solution for network with n links and r RTPs. . . . 5

6.1 Flow entries installed on switch s. The egress ports and parent ports are derived

from the overlay network. The ingress port is the port from which the packet

entered. 18

6.2 The tagging of a probe packet in every possible state. We note in parentheses the

number of bits required for each tag in a network with n switches and r RTPs. . 18

7.1 Calculation times of the overlay network for various topologies and a single MP . 20

7.2 Optimal vs. worst location for a single MP . 23

v

Chapter 1

Introduction

Round Trip Time, the time required to send a packet towards a specific destination and receive

a response, is frequently used as a metric for network performance assessment. The common

technique for RTT monitoring is to send probe packets from vantage points in the network and

monitor their RTT. In order to monitor a specific path, control over the routing is required. How-

ever, in traditional networks, the routing is determined by traditional routing protocols; thus,

monitoring every path in the network is practically impossible. Moreover, the monitored paths

can change due to the dynamic nature of the traditional routing protocols, creating unstable

paths and inconsistent RTT measurements [1, 2].

In recent years, SDN networks are becoming more common, and promise easier control over

the network. However, OpenFlow, the common SDN protocol, does not provide any support of

RTT measurements as part of its specification [3]. Moreover, OpenFlow switches do not have

an IP address in their datapath. As a result, tools like Ping and Traceroute are not suitable for

monitoring paths between two switches in the network. In this work, we present GRAMI, an

infrastructure that leverages the abilities of OpenFlow to fix paths in the network and duplicate

packets within the switches for two purposes. First, it enables RTT monitoring of any round-

trip path (RTP) between any two switches in the network, i.e., any path that starts in switch

si, leads to switch sj , and returns to si, not necessarily in a symmetric path. Consequently,

GRAMI can provide useful information for assessing the quality of different routing policies.

Second, it efficiently monitors the RTT of all the links in the network. Thereby, GRAMI enables

better anomaly detection and bottleneck identification.

To conduct the monitoring, a monitoring application is installed on hosts at preselected

vantage points, turning them into monitoring points (MPs). The MPs send probe packets and

monitor their RTT. A single MP is capable of monitoring the entire network, but using multiple

MPs can reduce the number of links monitored by each MP , and improve the accuracy of the

measurements.

1

GRAMI is composed of two phases, an offline phase and an online phase. In the offline

phase, an application installed on the controller builds a single overlay network and installs its

corresponding flow entries, which define the routing for the probe packets. The overlay network

enables monitoring of all the links in the network and all the RTPs selected by the user. In

order that every link be measured exactly once, the overlay network is composed of DAGs with

the MPs as their starting vertices. As the number of links between the MP and the switch/link

(i.e., the depth of the switch/link) increases, there is more likely to be noise in the monitored

RTT. Hence, the path from every switch and link to its closest MP in the overlay network is the

shortest possible. Whenever a dynamic change in the network occurs, the controller application

automatically recalculates the overlay network.

In the online phase the MPs repeatedly send probe packets. The probe packets are dis-

tributed over the overlay network to every switch, using the shortest path. Along the way, the

switches use tagging in order to identify the path traversed by each probe packet and the path

it should traverse. When a probe packet is received at a switch s, it triggers the measurement

of every egress link of s according to the overlay network, and of all the preconfigured RTPs

that start at s. The probe packet is duplicated and tagged, and one tagged clone is sent back

to its original MP on the same shortest path of the overlay network. The other tagged clones

are sent to the egress links and to the preconfigured RTPs. The duplication capability of the

switches reduce the load caused by probe packets since only one probe packet is sent from each

MP . The duplication also increases the accuracy because the path is partly shared by both

probe packets.

The RTT of specific a RTP P that starts at sp is estimated as the difference between the

RTT of two probe packets: (1) the probe packet that returned directly from sp and (2) the

probe packet that first traversed the RTP P , returned to sp, and then went back to its original

MP using the same shortest path of the overlay network. The MP can estimate the RTT of

each probe packet as the delta between the time it sent the original probe packet and the return

time of that probe packet.

Figure 1.1: Monitoring the

symmetric RTP: s2, s4, s6

For example, in Figure 1.1 GRAMI estimates the symmet-

ric RTT of the path s2, s4, s6 (dotted path) by subtracting the

RTT of the symmetric path m1, s3, s2 (solid path) from the

RTT of the symmetric path m1, s3, s2, s4, s6 (dashed path).

Estimating the RTT by subtraction of two RTTs is very

common and was also used in [4, 5, 6]. However, in traditional

networks, this technique is very limited, since the path cannot

be controlled.

Monitoring the RTT of a single link is equivalent to mon-

2

itoring an RTP P , where P is the path back and forth on a

single link. We note that GRAMI can also monitor the links

to hosts which are not MPs by installing virtual switches on the hosts, and monitoring them

as part of the network.

GRAMI is very efficient: First, it requires only four flow entries installed on every switch to

construct the overlay network and to enable monitoring of all the links. Any additional RTP

requires a maximum of two more flow entries on every switch in the path. Second, it uses only

a small number of probe packets; only one probe packet is sent from each MP , and the number

of return probe packets is equal to the number of measured RTPs plus the number of measured

links. Finally, the controller, which is often the most busy component in the network, is not

involved in the online RTT monitoring.

We implemented GRAMI and ran simulations on a network emulated with Mininet [7] and

based on CPqD OpenFlow virtual switches [8]. The code can be found in [9]. We demonstrated

the efficiency of GRAMI on different topologies and examined its overhead on a hardware switch

[10]. The results indicate that GRAMI adds short latency to the measurements with Mininet

(∼ 12µs for every packet duplication and ∼ 55µs for every tagging operation) and even shorter

latency in the hardware switch (< 4µs for every packet duplication and < 1µs for every tagging

operation).

The remainder of this work is organized as follows. Chapter 2 elaborates on relevant back-

ground and related work. Chapter 3 provides an overview of GRAMI. Chapters 4 and 5 describe

the offline and online phases respectively, while Chapter 6 outlines additional technical details.

Chapter 7 presents the evaluation of GRAMI, and Chapter 8 concludes.

3

Chapter 2

Background and related work

2.1 Time measurements in the internet

Several factors might impact the experienced RTT: link latency and bandwidth, queuing delays,

overloaded network, etc. While some factors are properties of the network and remain constant,

others can rapidly change due to the network traffic, significantly affecting the measured RTT.

Therefore, the RTT must be monitored constantly in order to track changes.

Multiple innovative and sophisticated approaches tried to overcome the limited control over

routing obtainable with classic routing protocols. Most of them focus on inter-domain mea-

surements, while our work focuses on intra-domain measurements. King [11] and IDMaps [12]

are mechanisms for estimating the RTT of paths between any two hosts in the internet. Paris

Traceroute [13] creates symmetric paths in the internet by manipulating load balancers in the

monitored paths and comparing their RTT. Network Radar [14] uses network tomography [15]

and the RTT of different paths for one-way delay estimations. Still, these solutions solve prob-

lems in an environment in which the control over routing is limited, and therefore cannot monitor

the RTT of every path in the network.

2.2 Measurements in OpenFlow networks

OpenFlow enables control over the routing in the network datapath by allowing the controllers

to install flow entries on the switches. OpenFlow adds a lot of useful information with mul-

tiple counters and meters. Yet it does not supply any time measurement API as part of its

specification.

Tools like Ping and Traceroute, the common tools for RTT monitoring [16], or more recently

proposed tools such as PingMesh [17], are not suitable for OpenFlow networks, since they cannot

observe layer-2 hop and the datapath has no IP address. Therefore, researchers have tried to

create tools more suitable for OpenFlow networks. Several works [18, 19, 5] used the controller

4

to send probe packets and measure their delay. However, the control path has different delays

than the data path and it frequently becomes a bottleneck [20], making it harder to produce

accurate results. Van Adrichem et al. [18] received noisy results and concluded that “The

control plane is unsuitable to use as a medium for time-accurate delay measurements.” In [21]

Agarwal et al. proposed SDN Traceroute, which uses PACKET IN messages to determine the

paths traversed by specific packets in OpenFlow networks. However, it also relies on the control

plane and therefore cannot be used for accurate RTT monitoring.

In the closest work to ours, Shibuya et al. [6] enabled all physical links RTT monitoring

by setting paths for probe packets sent from a single point in the network, other than the

controller. Table 2.1 compares GRAMI to the solution in [6]. GRAMI can monitor the network

from any number of MPs and balance the overload between them. Moreover, GRAMI reduces

the number of probe packets sent from the MPs per active measurement to a single probe packet

from each MP . Finally, GRAMI is more resource efficient, it requires only four flow entries on

every switch in order to monitor all the links, and it requires two additional flow entries to

monitor any additional RTP that traverses through this switch. In comparison, the solution in

[6] requires the number of flow entries on the switches to be proportional to the number of links

in the network for monitoring the links only. To the best of our knowledge, GRAMI is the first

infrastructure that enables RTT monitoring of any RTP.

MPs Probe packets Flow entries Measuring

GRAMI Any k Send k, Return n+ r 4 + 2r Links & RTPs

[6] 1 Send n, Return n O(n) Links Only

Table 2.1: GRAMI vs. Shibuya et al.’s solution for network with n links and r RTPs.

2.3 Estimating one-way delay

In order to accurately measure one-way delay, a time-stamped packet should be sent from source

to destination. For example, Consistent NetFlow [22] sends time-stamped packets between

routers. The main problem with this approach is time-synchronization, which adds a lot of

complexity to the network.

To overcome this problem, many approaches halved the RTT of the selected path. As

discussed in [23], the accuracy of this approach is highly dependent on path symmetry and

symmetric load in both directions of the path. GRAMI adds small but asymmetric overload.

Therefore it is not suitable for one-way delay estimation.

5

Chapter 3

GRAMI Overview

3.1 Goal and considerations

Our main goal is to create a generic, scalable and efficient infrastructure that enables RTT

monitoring for any RTP and for all the links in the network. To achieve this goal, GRAMI

meets the following criteria:

1. Compatibility: GRAMI should work with every OpenFlow network as is. Therefore,

it makes no assumptions on the network topology and does not require changes to the

OpenFlow protocol or to the switches.

2. No Time-Synchronization: Time-synchronization adds a lot of complexity to the net-

work. Therefore, GRAMI does not count on time-synchronization.

3. Active Probing: Passively sampling packets in the vantage points is not sufficient for

covering every path in the network. Thus, GRAMI uses active probing.

4. Minimal Controller Involvement: As explained in [18], the control plane is not suit-

able for time-accurate measurements. In addition, the control path frequently becomes a

bottleneck [20]. For that reason, the controller does not participate in RTT monitoring in

GRAMI.

5. Flexibility: GRAMI should be flexible. Thus, it can turn any vantage point into an MP

and it can monitor from any number of MPs.

6. Resource Efficiency: First, the flow table capacity is often limited and multiple flow

entries can degrade the switch performance [24]. Therefore, GRAMI installs only a small

number of flow entries on the network switches. Second, overloading the network may

decrease the accuracy of the measurements. Hence, GRAMI sends only one probe packet

from every MP .

6

7. Accuracy: GRAMI builds the overlay network and uses packet duplication to optimize

the accuracy of the results.

8. Dynamic Updates: Configurations are a burden to the network operators. Therefore,

GRAMI automatically adapts to dynamic network modifications.

3.2 The workflow of GRAMI

Figure 3.1: The workflow of GRAMI

GRAMI allows the user to select any RTP in the network, and the desired number of MPs.

Then, GRAMI works in two phases: an offline calculation phase, in which the controller applica-

tion sets the routing for the probe packets, and an online RTT monitoring phase in which each

MP sends probe packets for RTT monitoring (see Figure 3.1). The offline calculation phase

contains several steps: in the beginning, the controller application calculates the MP location

set, which optimizes the overlay network. Afterwards, according to the locations of the MPs,

it computes the shortest path towards every switch and link in the network, and calculates the

overlay network. Eventually, the controller application translates the overlay network and the

given RTPs into flow entries, and installs them on the OpenFlow switches.

The MPs are in charge of the online RTT monitoring phase. Each MP periodically sends

a single probe packet. The probe packets are duplicated, distributed and tagged within the

switches according to the flow entries. All of the probe packets return to the MP from which

they originated. For each of the returned probe packets, the MP extracts the tags in order

to identify the path the probe packet traversed. Eventually, it uses the RTTs of the returning

probe packets to estimate the RTTs of all the links and specified RTPs.

Once in a predefined time, a summary of the results is sent by the MPs to the controller or to

any application that might require the information. In the case of dynamic network modifications

7

such as link failure or the addition of a new switch, the overlay network is recalculated and the

flow entries are reinstalled.

8

Chapter 4

GRAMI offline phase

The offline phase is composed of three steps: (1) computing the MP location set, (2) calculating

the overlay network, and (3) deriving and installing the corresponding flow entries on the network

switches. These flow entries ensure that the probe packets will traverse the network according to

the overlay network and RTPs. In this Chapter we elaborate on steps (1) and (2). For the ease

of reading, we explain step (3) in Section 6.2, after elaborating on the online phase in Chapter

5.

4.1 Computing the MP location set

The controller application learns about the network topology by using a topology discovery

application. It receives as an input the desired number of MPs, k, and in some cases, a fixed

set of vantage points to be MPs. The controller application completes this set to a set of size k

by computing the locations of the rest of the MPs. The MP location set should minimize the

maximal depth (i.e., the number of links from the closest MP). GRAMI selects the location set

that balances the number of links monitored by each MP , as long as it does not increase the

depth of any link.

This type of optimal location set problem is known to be NP -hard [25]. GRAMI chooses the

best location set among those found by two algorithms: farthest-first traversal greedy algorithm

[25]1 and local-search heuristic2. This approach bounds the maximal link depth to be 2d + 1

where d is the maximal link depth in the optimal solution.

1GRAMI uses the given set or chooses the first MP randomly and then iteratively adds the farthest MP in

every iteration.
2GRAMI uses the given set or starts with an empty set and then iteratively adds the optimal local MP in

every iteration.

9

4.2 Calculating the overlay network

The overlay network sets a singular shortest path from every link in the network to its closest

MP (see Figure 4.1).

Figure 4.1: (a) Example topology of network switches.

(b) The overlay network after connecting MP m1 to s3.

(c) The overlay network after connecting MP m1 to s3 and MP m2 to s6.

In case of a single MP , the overlay network is a Direct Acyclic Graph that covers all the

links in the network.

To construct the overlay network for a single MP , GRAMI first builds a shallow spanning

tree, i.e., a shortest path spanning tree. The links of the spanning tree are marked as solid links.

We denote the single ingress solid link of every switch as its parent link. Then GRAMI adds the

rest of the links and marks them as dashed links. In order to minimize the depth of the dashed

links, GRAMI sets the direction of the dashed links from the switch with the lower depth to the

switch with the higher depth. Note that the difference between these depths is at most one.

If there are multiple MPs, GRAMI divides the links between them so that every link is

monitored by its closest MP . If there are several closest MPs, GRAMI tries to balance the

number of links connected to each one. In this case, the overlay network is composed of multiple

DAGs with the MPs as their starting vertices. The solid links create a single path to every

switch from exactly one MP and the dashed links cover the remaining links. This overlay

network is calculated in four steps (see Figure 4.2):

1. The links are divided between the MPs, creating k connected sub-networks. Every link is

connected to its closest MP . In case of a tie, the link is added to the MP that has fewer

links in its DAG. Note that in this step, a switch can be covered by multiple MPs.

2. An overlay network with a single MP is calculated for every sub-network.

3. All the sub-networks are merged into a single network.

10

4. For every switch with multiple parent links, the parent link with the minimal depth remains

solid and the rest of the ingress links become dashed.

Figure 4.2: calculating the overlay network for two MPs.

GRAMI automatically adapts to dynamic modifications caused by failures or additions of

network components. Those modifications are detected by the controller, either by packets that

arrive at the controller to inform it that a new switch was added (OFTP HELLO message),

or by using a topology discovery application. After the modification has been detected, the

controller application recalculates the overlay network, derives the flow entries, and installs

them without any manual configuration.

11

Chapter 5

GRAMI online phase

In the online phase, the MPs work in measurement rounds. In every round, each MP sends a

single probe packet with the measurement round number as payload. This number is used to

match the sent probe packet to the return probe packets. The sent probe packet is duplicated

and tagged within the switches and distributed over the overlay network. The duplication

mechanism does add a short latency to the processing time in the switches (see Section 7.2);

however, it also obviates the need for sending multiple probe packets.

The probe packets cover all the links and RTPs, and return to their original MP . Each MP

extracts the tags and the measurement round number from the returning probe packets, and

saves their RTT as the time elapsed since sending the probe packet with the same measurement

round number. In this way, the MP can calculate the RTT of every link and RTP in its sub-

network. In this Chapter, we first explain the probe packet distribution and then the RTT

calculations.

5.1 Probe packet distribution over the overlay network

The probe packet distribution is determined by the probe packet’s tags while arriving at a

specific switch. The tags are encoded in the probe packet headers (see details in Section 6.1).

According to the headers and the ingress port, the switch matches the probe packet to a specific

flow entry and executes the corresponding actions. In this section we explain the general idea

behind the probe packet distribution and in Section 6.2 we describe the flow entries.

Each probe packet contains a directionF lag that indicates the direction of distribution.

Probe packets that traverse the overlay network in the direction of the links are denoted as

forward probe packets. The return probe packets are denoted correspondingly. The MPs send

only forward probe packets.

To ensure coverage of all the links, probe packets are distributed over the overlay network as

follows. When a forward probe packet arrives at switch si from switch sj , where the link from sj

12

to si is the parent link of si in the overlay network, si duplicates the probe packet and distributes

the clones through all of its egress links according to the overlay network. Note that the egress

links can be either solid or dashed. In addition, si sends a return probe packet back to sj . The

return probe packet is tagged with the IDs of both switches (si, sj) to identify the last link and

its direction. Additionally, the probe packet also contains a ParentF lag that indicates whether

the link is a parent link. In this case, the ParentF lag=True in the return probe packet.

When a forward probe packet arrives at a switch si from switch sj , where the link from sj to si

is not si’s parent link, si only sends the return probe packet back to sj with ParentF lag=False.

This mechanism ensures that every link and switch will be covered, but only once.

When a return probe packet arrives at a switch, the switch sends it through its parent link.

The return probe packet thus traverses the shortest path back to its original MP (note that the

return path is composed of solid links only). Figure 5.1 shows the distribution process over the

example network.

Figure 5.1: Step-by-step distribution process for the network links. The black arrows represent

forward probe packets and the white arrows represent return probe packets. For convenience,

the steps are presented synchronously.

The RTPs must be preconfigured in the network so that the probe packets will be able to

traverse them. When a forward probe packet arrives at a switch sp from its parent link, sp sends,

in addition to the aforementioned clones, a single probe packet to each RTP P that starts at

sp. Each probe packet contains an RTPFlag indicating whether the packet measures an RTP

13

or a link. The probe packets that measure RTPs are tagged with RTPFlag=True (for links

RTPFlag=False). Additionally, the probe packets are tagged with the ID of sp and the ID of

the RTP P . The switches along the RTP use the tag P to send the probe packet along P until

it returns to sp. Then, sp tags the probe packet as a return probe packet, and sends it back to

the MP via its parent link.

Figure 5.2 illustrates the process of measuring an asymmetric RTP P that starts at s2. In

step 1, probe packets arrives on the same path as the corresponding probe packet in steps 1-2

in Figure 5.1. In steps 2-4, s2 sends the probe packet to traverse P . In step 5, s2 identifies

the probe packet that returns from P and sends it back to the MP in the same path as the

corresponding probe packet in steps 5-6 in Figure 5.1. The process focuses on traversing P and

ignores the duplication according to the overlay network.

Figure 5.2: Monitoring RTP of the asymmetric RTP P={s2, s4, s3, s2}. The numbers on the

arrows represent steps in a synchronous network. The black arrows represent forward probe

packets, the dotted arrows represent probe packets traversing P , and the white arrows represent

return probe packets.

5.2 RTT Calculations

In every measurement round, each MP sends a single forward probe packet but receives multiple

return probe packets.1 TheMPs have a configurable measurement round timeout; probe packets

that exceed this timeout will be considered lost.

As explained, the return probe packets contain the information of a link or that of an RTP.

In the case of a link, the return probe packet contains an RTPFlag=False. The RTT of the

link from sj to si is equal to the RTT of the probe packet tagged with (si,sj)
2 minus the RTT

1We assume that under similar conditions, similar packets experience similar processing time in the switches.

However, for specific scheduling techniques such as: Virtual Output Queues or Active Queue Management, the

time in queue may vary for different ingress ports; other techniques should be used in that case. We moreover

assume that middleboxes will use consistent routing and will not change the tagging of the probe packets.
2The probe packets are tagged on their way back; therefore, (si,sj) represents the link from sj to si in the

14

of the probe packet that measured the shortest path to sj , which is the RTT of a probe packet

that is tagged with (sj ,sk) and parentF lag=True.

In the case of an RTP, the return probe packet contains an RTPFlag=True and the IDs

(sp,P), where sp is the first switch in the RTP P . The RTT of P is equal to the RTT of the

probe packet tagged with (sp,P) minus the RTT of the probe packet that measured the shortest

path to sp.

Note that the MP does not need to receive the network topology from the controller ap-

plication to perform RTT calculations. However, during topology changes, some of the probe

packets might traverse unexpected paths, possibly leading to calculation errors. Therefore,

unstable networks require a tight connection between the controller and the MPs.

overlay network.

15

Chapter 6

GRAMI - technical details

In this chapter we describe the tagging mechanism and the flow entries installed on the network

switches.

6.1 Tagging mechanism

The controller application selects unique IDs for the selected RTPs, unique IDs for the switches,

and a NULL ID to indicate an empty ID value. Note that probe packets with RTP information

contain two IDs; the RTP ID and the first switch ID. Probe packets with link information

contain two IDs as well; those of the switches at the link’s endpoints. Thus, GRAMI uses two

fields of IDs; (ID1, ID2), to enable tagging of RTPs or links according to the RTPFlag.

To enable the tagging only in the desired switches, GRAMI uses SetIDFlag to indicate

whether the IDs should be tagged (i.e., at least one ID has not yet been tagged).

GRAMI uses the following tags (summarized also in Table 6.2):

1. DirectionF lag indicates whether the direction of the probe packet is forward or return.

It is used by the switches to match the probe packets to a flow entry.

2. SetIDFlag indicates whether the packet still has to be tagged with an RTP ID or a switch

ID. It is used by the switches to match the probe packets to a flow entry.

3. ParentF lag indicates whether the last link in the path was a parent link. It is used by

the MPs for RTT calculations.

4. RTPFlag indicates whether the information in the return probe packet is related to an

RTP or to a link. It is used by the MPs for RTT calculations.

5. (ID1, ID2) are used by the MPs for RTT calculations. If RTPFlag=False, the IDs are

the endpoints of a link; otherwise, ID2 is the ID of the RTP, and ID1 is the ID of the

16

first switch in the RTP. Note that ID2 is also used by the switches to match the probe

packet and forward it along the RTP.

Since the probe packets are created in the MPs and used only for RTT monitoring, they can

be independent of a specific protocol. Therefore, GRAMI can add any payload, and select any

field for tagging, as long as the OpenFlow version supports tagging and matching for that field.

We implemented GRAMI with OpenFlow1.3 and used ETH TYPE (16 bits) and two VLAN

headers (12 bits each). The DirectionF lag and the SetIDFlag were encoded by four different

ETH TYPE values that are not correlated with any protocol. The ParentF lag, RTPFlag and

ID1 were encoded in one VLAN header. ID2 was encoded in the other VLAN. In ID1, 10 bits

were used for switch ID or the NULL ID. In ID2, 12 bits for switch ID, RTP ID or the NULL

ID.1 Hence, the current implementation is limited to (210−1)=1023 switches and (212−1)=4095

RTPs, but choosing other fields for tagging is possible for bigger networks.

VLAN headers are commonly used for tagging in OpenFlow networks [26]. However, tagging

with VLANs has the overhead of using the ”PUSH VLAN” and ”POP VLAN” actions, in addi-

tion to setting the field with the relevant tag. In the P4 language (also referred as ”OpenFlow

2.0 API”) [27], the user can define specific headers for tagging, and only set these headers in

order to tag the packet. Implementing GRAMI with the P4 language should thus significantly

reduce the overhead caused by the tagging mechanism.

6.2 The flow entries

The controller application calculates the overlay network and derives the corresponding flow

entries. In addition, it finds the relevant ingress and egress ports of every switch along each

of the selected RTPs. Then, the controller application installs the flow entries on the network

switches.

Table 6.1 describes in detail all the flow entries that implement the distribution, duplication,

and tagging mechanisms. If a probe packet matches several flow entries, the one with the highest

priority will be executed.

The purpose of flow entries 1-4 is to distribute the probe packets according to the overlay

network; therefore, these flow entries are installed on all the switches. The controller application

installs flow entries 5-6 for every selected RTP. The purpose of these flow entries is to distribute

the probe packets over a specific RTP P which starts in switch sp. Therefore, these flow entries

are installed only on switches along P . Flow entry 5 is installed on every switch in P except sp

in order to create P (it can be installed twice if the switch appears twice in P). Flow entry 6 is

installed on sp so the probe packet will return to the MP after traversing P .

1ID2 requires at least log(max(r, n) + 1) bits for a network with n switches and r RTPs.

17

Table 6.1: Flow entries installed on switch s. The egress ports and parent ports are derived

from the overlay network. The ingress port is the port from which the packet entered.

Below we describe the life-cycle of a probe packet. In parentheses we note the state of the

probe packet according to Table 6.2 and the flow entry number according to Table 6.1.

Table 6.2: The tagging of a probe packet in every possible state. We note in parentheses the

number of bits required for each tag in a network with n switches and r RTPs.

The forward probe packet is sent from the MPs with (ID1, ID2)=(NULL,NULL) and

SetIDFlag=True (a). When it arrives at a switch from its parent link, the switch distributes the

probe packet to its egress links (a,1) and sends a return probe packet through its ingress port after

tagging ID1 and ParentF lag=True (b,1). If a forward probe packet with SetIDFlag=True ar-

rives at a switch from a link which is not its parent link, the switch tags ID1, ParentF lag=False,

and sends a return probe packet (b,2). The first switch on the return path to the MP tags ID2

and sets SetIDFlag=False (c,3), so the probe packet will not be tagged until it returns to the

MP (c,4).

When the probe packet start traversing an RTP P that originates in a switch sp, sp sets

RTPFlag = True, (ID1, ID2)=(sp, P) and SetIDFlag=False (d,1). The packet is still a for-

ward probe packet but it will not be tagged. The switches along the P forward the probe packet

18

until it returns to sp (d,5). Then, sp sets DirectionF lag=Return and the probe packet returns

to the MP (e,6) along the shortest path.

19

Chapter 7

Evaluation and discussion

We tested GRAMI on a network emulated with Mininet and based on CPqD OpenFlow virtual

switches controlled by a single Ryu controller [28]. All links were set with a 100Mbps bandwidth

and 20ms latency. The only traffic in the network was OpenFlow communication between the

controller and the switches.

7.1 Building the overlay network

No. Name Links Switches Max Depth Calc Time (ms)

1 GetNet 8 7 3 2.82

2 Peer1 20 16 4 11.79

3 Airtel 37 16 3 15.37

4 BT Europe 37 24 3 30.02

5 BICS 48 33 6 55.39

6 ATT 57 25 4 47.89

7 GEANT 61 40 5 87.49

8 Deutsche... 62 39 5 101.13

9 Forthnet 62 62 5 106.48

10 BTN 65 53 6 120.8

Table 7.1: Calculation times of the overlay network for various topologies and a single MP .

We tested GRAMI on topologies taken from Topology Zoo [29]. In all of the tested topologies,

GRAMI successfully monitored the RTT of all the links in the network and the RTT of different

RTPs we preconfigured. Table 7.1 describes the topologies, the overlay network calculation time,

and the maximal depth when a single MP is placed in the optimal location. As shown in the

table, the calculation time tends to grow when the network size and maximal depth increases.

20

Installing the flow entries took an additional 2.7ms per switch.

In the following tests we used topology 5. In every test we conducted 200 measurement rounds

and sent a single forward probe packet from every MP with 1 second interval between rounds.

Note that Mininet is a virtual environment not suitable for measuring time or performance

accurately. However, it is a proof of concept and gives us a sense on the impact of different

network parameters. In the next sections, we try to estimate GRAMI’s overhead in Mininet

followed by an assessment of how different network parameters might affect the accuracy of the

RTT measurements.

7.2 Overhead analysis

GRAMI has the overhead of duplication and tagging within the switches. We measured the

overhead in our emulated Mininet network with virtual switches and found that the average

latency for adding a single VLAN header tag is equal to ∼ 55µs, and the average latency for

a single packet duplication is equal to ∼ 12µs. To estimate the overhead of GRAMI for paths

with different lengths, we selected three switches with depths of 2-4 in topology 5. Then, we

installed flow entries to set the shortest symmetric path toward each switch.

(a) Path composed of two links (b) Path composed of three links

(c) Path composed of four links

Figure 7.1: GRAMI vs. forwarding monitored RTT CDFs for paths composed of different

number of links.

21

We monitored the RTT of those paths with simple forwarding (the packets were forwarded

between the switches with no further actions) and with GRAMI. Figure 7.1 compares the moni-

tored RTT and shows that GRAMI adds small overhead to the results, which increases for longer

paths. Note that the same link latency was emulated for all the links in the network. As a result,

the probe packets that were sent from a certain switch to its egress links returned to that switch

within a short time of one another. Since in our emulated network tagging takes much longer

than duplication, each probe packet had to wait in the switch queue until the switch tagged the

probe packets that preceded it in the queue. Thus, even though the mentioned latencies were

relatively small, they accumulated and increased with the length of the measured path.

We measured these mentioned latencies for NoviFlow Novikit 250 switch [10]. The packet

duplication took less then 4µs and tagging took less than 1µs. We expect the overhead to be

significantly lower also on other hardware switches.

7.3 Link depth

In order to estimate the impact of depth on the accuracy of the measurements, we calculated the

standard deviation of the RTT measurements for every link. The standard deviation provides

a good estimation of measurement noise. As Figure 7.2 shows, for deeper nodes, the RTT

measurements tend to be more noisy.

Figure 7.2: Scatter plot of the average standard deviation in the RTT measurements as a function

of the link’s depth. Every x is a link in the network.

7.4 MP location set

To check how the location of an MP affects the monitored RTT, we used GRAMI to find the

optimal and worst locations to place a single MP . Note the optimal location for a single MP

22

can be found in polynomial time.

Location Avg depth Max depth Avg RTT(ms) Avg Stdev(ms)

Optimal 3.91 6 21.88 0.75

Worst 7.125 9 21.97 1.2

Table 7.2: Optimal vs. worst location for a single MP .

Table 7.2 shows that the optimal location reduces the depth of the links, GRAMI’s overhead,

and measurement noise.

We also monitored all the links in the network for 1-6 MPs connected to the network. As

shown in Figure 7.3, the average RTT monitored by GRAMI decreased as the number of MPs

grew. The dashed line represents the link latency that was emulated for all the links in the

network. Since the RTT also includes the processing time in the switches, the average RTT

cannot reach the dashed line. However, as it gets closer, the overhead of GRAMI decreases.

Figure 7.3: Average RTT of the links in the network as a function of the number of MPs.

Figure 7.4 shows that the measurements tend to be less noisy as the number of MPs in-

creases. We assume these more stable results are due to the use of multiple MPs, which reduces

the average depth in the network.

23

Figure 7.4: Average standard deviation in the RTT measurements of all the links as a function

of the number of MPs.

7.5 Sensitivity to network conditions and dynamic changes

We tested how GRAMI responds to dynamic changes in the network by selecting a specific link

and monitoring its RTT for 15 seconds with a 200ms interval between probe packets.

Figure 7.5: RTT over time for a single link that was overloaded at known times. In the solid

segment, we overloaded the network with 57Mbps, as opposed to 54Mbps in the dotted segment.

First, we tested whether GRAMI can detect a flooded link. For that reason, we used the

Ipref tool to overload the specific link with known data rates as shown in Figure 7.5. The graph

shows that GRAMI monitored an increasing RTT during overloading. Moreover, the graph

shows that GRAMI immediately detected when we stopped overloading the link.

24

Figure 7.6: RTT over time for a single link with dynamic changes.

In addition, we tested whether GRAMI can detect changes in the latency of a link or link

failure. As Figure 7.6 shows, GRAMI immediately detected the change in the link’s latency,

and when the link failed, it did not receive a return probe packet that measured the link, and

thus could not monitor the RTT. As the graph shows, GRAMI did not immediately identify the

recovery of the link. In fact, it took the controller application 89.24ms to detect the recovery and

calculate the new overlay network, and 188.11ms to install the flow entries on all the switches.

25

Chapter 8

Conclusions

We introduced GRAMI, an infrastructure that enables RTT monitoring all the links and of

all the RTPs preconfigured in OpenFlow networks. GRAMI is easy to operate and supplies

important information for network operators. Moreover, GRAMI is resource efficient and does

not involve the controller in the online RTT monitoring. This work demonstrates the power of

OpenFlow and SDN concepts, and uses the new capabilities of OpenFlow to enable accurate

RTT monitoring in granularity and stability that could not be achieved in traditional networks.

26

Bibliography

[1] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From paris to tokyo: On the suitability

of ping to measure latency,” in Proceedings of the 2013 conference on Internet measurement

conference. ACM, 2013, pp. 427–432.

[2] M. Crovella and B. Krishnamurthy, Internet measurement: infrastructure, traffic and ap-

plications. John Wiley & Sons, Inc., 2006.

[3] O. N. Foundation, “Openflow switch specification (version 1.3.0),” 2012.

[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[4] A. B. Downey, “Using pathchar to estimate internet link characteristics,” in ACM SIG-

COMM Computer Communication Review, vol. 29, no. 4. ACM, 1999, pp. 241–250.

[5] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V. Madhyastha, “Software-

defined latency monitoring in data center networks,” in Passive and Active Measurement.

Springer, 2015, pp. 360–372.

[6] M. Shibuya, A. Tachibana, and T. Hasegawa, “Efficient performance diagnosis in openflow

networks based on active measurements,” ICN 2014, p. 279, 2014.

[7] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for

software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks. ACM, 2010, p. 19.

[8] “”cpqd openflow software switch”, http://cpqd.github.io/ofsoftswitch13/.”

[9] “https://github.com/alonatari1/grami.”

[10] ”noviflow novikit 200”, http://www.nvc.co.jp/pdf/product/noviflow/

novikit250datasheet.pdf.

[11] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency between arbitrary

internet end hosts,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment. ACM, 2002, pp. 5–18.

27

[12] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “Idmaps: A global

internet host distance estimation service,” Networking, IEEE/ACM Transactions on, vol. 9,

no. 5, pp. 525–540, 2001.

[13] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced paths in the in-

ternet,” in Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.

ACM, 2007, pp. 149–160.

[14] Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network radar: tomography from round

trip time measurements,” in Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement. ACM, 2004, pp. 175–180.

[15] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link

data,” Journal of the American Statistical Association, vol. 91, no. 433, pp. 365–377, 1996.

[16] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey on network troubleshoot-

ing,” Technical Report Stanford/TR12-HPNG-061012, Stanford University, Tech. Rep.,

2012.

[17] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,

H. Chen et al., “Pingmesh: A large-scale system for data center network latency measure-

ment and analysis,” in Proceedings of the 2015 ACM Conference on Special Interest Group

on Data Communication. ACM, 2015, pp. 139–152.

[18] N. L. Van Adrichem, C. Doerr, F. Kuipers et al., “Opennetmon: Network monitoring in

openflow software-defined networks,” in Network Operations and Management Symposium

(NOMS), 2014 IEEE. IEEE, 2014, pp. 1–8.

[19] K. Phemius and M. Bouet, “Monitoring latency with openflow,” in Network and Service

Management (CNSM), 2013 9th International Conference on. IEEE, 2013, pp. 122–125.

[20] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elastically scaling up sdn

control-plane using vswitch based overlay,” in Proceedings of the 10th ACM International

on Conference on emerging Networking Experiments and Technologies. ACM, 2014, pp.

403–414.

[21] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing sdn forwarding

without changing network behavior,” in Proceedings of the third workshop on Hot topics in

software defined networking. ACM, 2014, pp. 145–150.

[22] M. Lee, N. Duffield, and R. R. Kompella, “Opportunistic flow-level latency estimation using

28

consistent netflow,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 139–152,

2012.

[23] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using network-wide mea-

surements,” IEEE/ACM Transactions on Networking (TON), vol. 14, no. SI, pp. 2710–2724,

2006.

[24] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching: Data plane perfor-

mance,” in Communications (ICC), 2010 IEEE International Conference on. IEEE, 2010,

pp. 1–5.

[25] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theoretical

Computer Science, vol. 38, pp. 293–306, 1985.

[26] S. Narayana, J. Rexford, and D. Walker, “Compiling path queries in software-defined net-

works,” in Proceedings of the third workshop on Hot topics in software defined networking.

ACM, 2014, pp. 181–186.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Ta-

layco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent packet pro-

cessors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,

2014.

[28] ”ryu sdn framework”, http://osrg.github.io/ryu-book/en/ryubook.pdf.

[29] ”the internet topology zoo”, http://www.topology-zoo.org/.

29

 תקציר

ברשת מסלולים שוניםעל גבי (Round-Trip Times)ניטור הזמן הלוקח להודעות לעבור הלוך ושוב

 תת. השיטה הנפוצה ביותר למדידמספק מידע חיוני לצורך פתרון בעיות ברשת ותכנון תעבורת הרש

היא שליחת הודעות בדיקה מנקודות נבחרות ברשת. ברשתות קלאסיות, השליטה על הניתוב אלו ניםזמ

 ברשת.את כל הדרכים הקיימות לכן בלתי אפשרי לנטר ,ברשת מוגבלת מאוד

מפשט את השליטה על הניתוב ברשת. עם Software Defined Networking הקונספט החדשני של

, לא מספק תמיכה בניטור זמנים ברשת. SDN-מבין פרטוקולי ההנפוץ הפרוטוקול , OpenFlow זאת,

תשתית – GRAMI לשלוט בניתוב ברשת ונציג את OpenFlow , אנחנו נמנף את היכולות שלבעבודה זו

נקודות מדידה ושולח מהן הודעות שיהוובוחר נקודות ברשת GRAMI ברשת. RTTsהמשמשת למדידת

שנבחר על כל מסלול מעגלי ברשת עבור RTTמאפשרות מדידה של . הודעות אלובאופן אקטיביבדיקה

 .ידי המשתמש ושל כל אחד מהלינקים ברשת

GRAMI נתב ברשת שיותקנו על כלהוא דורש ארבע רשומות בלבד :תוכנן להיות יעיל במשאבים

דורש GRAMI של כל הלינקים ברשת. עבור כל מסלול מעגלי שבוחר המשתמש, RTTsבמטרה למדוד

משתמש במספר מינימלי של GRAMI על כל נתב ברשת. יתר על כן,שיותקנו עד שתי רשומות נוספות

 לצורך המדידות. controllerולא דורש מעורבות של ה ,הודעות בדיקה

מבי"ס אפי ארזי למדעי המחשב, המרכז ענת ברמלר בר של פרופ' ה עבודה זו בוצעה בהדרכת

 הבינתחומי, הרצליה.

 המרכז הבינתחומי בהרצליה
ספר אפי ארזי למדעי המחשב-בית

 מחקרימסלול - (.M.Scהתכנית לתואר שני)

יעיל ברשתות RTTניטור

OpenFlow

 מאת

 אלון אטרי

במסלול .M.Scק מהדרישות לשם קבלת תואר מוסמך כחל עבודת תיזה המוגשת

 הרצליה המרכז הבינתחומיזי למדעי המחשב, המחקרי בבית ספר אפי אר

2016 ינואר

