
The Interdisciplinary Center, Herzliya

Efi Arazi School of Computer Science

Accelerating Regular Expression
Matching over Compressed HTTP

Traffic

Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of Science

(M.Sc.) Research Track in Computer Science

Submitted by Omer Kochba

Under the supervision of Prof. Anat Bremler-Barr

& Dr. Yaron Koral

March 2016

Abstract

This work focuses on regular expression matching over compressed traffic. The need

for such matching arises from two independent trends. First, the volume and share

of compressed HTTP traffic is constantly increasing. Second, due to their superior

expressibility, current Deep Packet Inspection engines use regular expressions more and

more frequently.

We present an algorithmic framework to accelerate such matching, taking advantage of

information gathered when the traffic was initially compressed. HTTP compression is

typically performed through the GZIP protocol, which uses back-references to repeated

strings. Our algorithm is based on calculating (for every byte) the minimum number

of (previous) bytes that can be part of a future regular expression matching. When

inspecting a back-reference, only these bytes should be taken into account, thus enabling

one to skip repeated strings almost entirely without missing a match. We show that

our generic framework works with either NFA-based or DFA-based implementations and

gains performance boosts of more than 70%. Moreover, it can be readily adapted to

most existing regular expression matching algorithms, which usually are based either on

NFA, DFA or combinations of the two. Finally, we discuss other applications in which

calculating the number of relevant bytes becomes handy, even when the traffic is not

compressed.

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Background 4
2.1 Compressed HTTP . 4
2.2 Deep Packet Inspection Algorithms . 5
2.3 String Matching Over Compressed Traffic 6

3 Related Work 8

4 The ARCH Framework 10
4.1 Input-Depth Calculation for NFA-Based Implementations 12
4.2 Input-Depth Estimation for DFA-Based Implementations 14

4.2.1 Estimation based on Simple and Complex States 15
4.2.2 Estimation based on Positive and Negative Transitions 17

5 ARCH-DFA System Architecture 23

6 Experimental Results 25
6.1 Data Set . 25
6.2 ARCH performance . 26

7 Additional Applications 29
7.1 Extraction of a matched pattern . 29
7.2 Patterns across packet fragmentation . 30
7.3 Efficient Pre-Filtering . 30

8 Conclusion 31

ii

Contents iii

Bibliography 32

List of Figures

4.1 DFA Example . 11
4.2 DFA Example . 11
4.3 NFA Example . 14
4.4 Basic automaton operators . 17
4.5 DFA Example for positive/negative transitions 18
4.6 Data structures used for positive/negative transition marking 21

5.1 Illustration of the Hybrid ARCH-DFA System architecture 24

6.1 Input-Depth Cumulative Distribution . 28

iv

List of Tables

4.1 Simulation of ARCH over Active States NFA. 14

6.1 Rule-sets characteristics . 25
6.2 ARCH Performance . 26

v

List of Algorithms

1 Modified subset construction algorithm . 19

2 Marking positive/negative transitions . 20

3 ARCH-DFA Input-Depth Maintenance . 21

vi

Chapter 1

Introduction

Deep packet inspection (DPI) is a crucial component in many of today’s networking

applications, such as security, traffic shaping, and content filtering. It is considered a

system performance bottleneck, since it inspects the packets’ payload in addition to

their header. Recently, especially due to the proliferation of mobile devices with limited

bandwidth, DPI components have had to deal also with compressed traffic. This adds an

additional performance penalty of data decompression prior to the inspection. Finding

an efficient solution is crucial as nowadays the majority of Web-sites use compression.1

HTTP compression is typically done with the GZIP protocol, which uses pointers to

repeated strings within the traffic. Current literature focuses on DPI over compressed

traffic for patterns that consist of strings. However, contemporary DPI engines are

required to support also regular expressions.

This work aims at providing a generic solution to accelerate any regular expression

matching on compressed traffic. As such, it applies to a wide range of methods for regular

expression matching over plain-text (namely, uncompressed) traffic. The inspection is

accelerated by avoiding scanning repeated strings within the input text (namely, the

strings represented as pointers in GZIP), which were in a sense “already scanned”.

Extra care is taken to detect and handle delicate cases where the regular expression

matches consecutive repeated and non-repeated strings (e.g., a pattern prefix followed
1A recent report shows that 64.4% of the Internet Web sites use HTTP compression. When looking

at the top 1000 most popular sites, over 92% of them use HTTP compression [1].

1

Chapter 1. Introduction 2

by a pointer to a repeated string). DPI algorithms rely mostly on finite automata. In

case of string matching, every state within the automaton corresponds to a single string.

Therefore, storing the information about the previously traversed states is sufficient to

determine the amount of bytes of the input text that may be safely skipped when

encountering a pointer within a compressed input (as discussed in Chapter 2). In case

of regular expressions, every state may represent a wide set of strings with various

lengths, as in the presence of the ‘*’ operator. For instance, given the pattern ‘ab+c’,

the input strings ‘abc’ and ‘abbbbc’ cannot be distinguished based on the information

of the automaton state alone as both input strings’ scans lead to the same state. To

overcome this problem, we provide an algorithm that evaluates a new parameter called

Input-Depth, which relates to the length of the input’s shortest suffix that leads to the

current state from the automaton’s root.

We provide an algorithmic framework called Acceleration of Regular expression matching

over Compressed HTTP (ARCH), which uses the Input-Depth parameter. We derive two

system designs from this framework with respect to the two distinct DPI approaches,

namely: two phase inspection — string based pre-filtering accompanied by an NFA

scan for regular expression matching, and a single pass inspection — DFA-based

regular expression matching. Our experiments show that the first design, denoted by

ARCH-NFA, skips up to 79% of the inspected traffic and thus gains more than 4.8 times

performance boost with respect to the second phase of regular expression matching. This

design has a significant practical importance as it relates to the architecture used by the

popular Snort IPS [2]. Our second system design, denoted by ARCH-DFA, also skips

up to 79% of the inspected traffic and gains more than 3.4 times performance boost

for moderate size pattern sets. Next we show how ARCH applies to large pattern sets

that require a multi-DFA design to avoid state-space explosion. This design maintains

almost the same average skip ratio of 78% and gains a performance boost of 3.3 times.

This work makes the following contributions:

1. A study of the challenges of regular expression matching over compressed traffic.

2. The first algorithmic framework that accelerates regular expression matching over

compressed traffic.

Chapter 1. Introduction 3

3. A generic algorithm to accelerate regular expression matching over NFA based

automata.

4. A generic algorithm, with two variants, to accelerate regular expression matching

over DFA based automata.

5. A system setup which allows handling large, complex rule-sets which cause state-

space explosion.

6. A live setup which experiments both the correctness as well as the performance

benefits of using the different algorithms.

7. A discussion of additional possible applications for this algorithm.

Chapter 2

Background

2.1 Compressed HTTP

Compressed HTTP (namely, content coding for HTTP) is a standard method of HTTP

1.1 [3]. The standard describes the following content codings: GZIP, DEFLATE and

COMPRESS. Practically, only the former two schemes are used. Since GZIP is a vari-

ant of DEFLATE, this work handles both algorithms in the same way. The GZIP

algorithm [4] has two underlying compression techniques: LZ77 and Huffman coding.

1. LZ77 compression reduces data size by replacing repeated strings within the last

32KB of uncompressed data by a pointer with (distance, length) format, where

distance indicates the distance in bytes of the repeated string from the current

location and length indicates the number of bytes to copy from that point. For

example the string: ‘abcdefabcx’ may be compressed to ‘abcdef(6,3)x’.

2. Huffman coding further reduces the data size by assigning variable-size code-

words for symbols, thus enabling to encode frequent symbols with fewer bits.

GZIP compression first compresses the data using LZ77 compression and then encodes

the literals and pointers using Huffman coding. Specifically, the algorithm in this work

is based on the characteristics of the LZ77 compression.

4

Chapter 2. Background 5

2.2 Deep Packet Inspection Algorithms

DPI involves processing of the packet payload to identify occurrences of a set of pre-

defined patterns. These patterns are expressed as either string or regular expressions.

Early network IPSs relied solely on string matching, which is usually based on some

variant of the Aho-Corasick [5] algorithm. This method uses a DFA to recognize multi-

ple string signatures in a single pass and its running time is deterministic and linear in

the input size.

Over the last years, security threats have become more sophisticated and required com-

plex signatures, which can no longer be expressed as strings. Therefore, most security

tools incorporate a regular expression matching engine. Regular expressions add three

operators: concatenation (of two expressions), alternation (OR, ‘|’) and Kleene clo-

sure (‘*’ or ‘+’) and are defined recursively over them [6]. Such engines are typically

implemented using either a DFA or an NFA.

DFAs scan the input in linear time, but use huge amount of memory due to the infa-

mous state-space explosion problem. Approaches to tackle this problem include keeping

cache of recently visited states [7], adding instructions to automaton edges [8], using

edge compression techniques [9, 10], and using multiple DFAs [11] where only some are

activated [12]. Our ARCH-DFA solution is based on A-DFA [10] and our design for

large pattern sets is inspired by Hybrid-FA [12].

NFAs, on the other hand, use linear space but have worst-case quadratic time com-

plexity [6], which may be exploited by an adversary for denial-of-service attack (DoS)

on the DPI element itself [13, 14]. In NFAs, upon inspecting a symbol b in a current

state s, one may need to transit to multiple next states (namely, by traversing all the

outgoing edges of state s with label b). A common implementation maintains a set of

active states S; for each input byte b this set is recomputed by traversing all b-labeled

edges from every state s ∈ S.

In practice, security tools with a large rule-set such as Snort [2], use a pre-filter based

solutions. The pre-filter performs string matching on extracted strings from the regular

expressions. When all strings of a specific rule match, a regular expression scan is

Chapter 2. Background 6

invoked using an NFA. The pre-filter can be accelerated over compressed traffic based

on prior solutions for string matching (as described in the sequel), while the NFA part

can be accelerated using our ARCH-NFA solution.

2.3 String Matching Over Compressed Traffic

LZ77 is an adaptive compression as each symbol is determined based on its preced-

ing data. Therefore, there is no way to perform DPI without decompressing the data

first [15]. Since decompression is a fairly inexpensive process, the real challenge is to

optimize the scanning of the decompressed data. The idea behind the acceleration algo-

rithm is to use the information gathered by the decompression phase to skip scanning

significant parts of the data. An LZ77 pointer represents a repeated string that was

already scanned. Therefore, it is possible to skip scanning most of the it without miss-

ing any pattern. Still, tracking previous matches does not suffice due to cases where a

pattern crosses a border of a repeated string. For example, given a pattern ‘nbc’ and an

input string ‘abcdnbxn(7,5)c’, while no match occurs at the repeated string ‘bcdnb’,

there are matches occurring on both its left and right borders.

This problem is tackled by the DFA-based ACCH algorithm [15], which is limited to

string matching. Upon encountering a repeated string it works as follows:

1. Scan the left border of the repeated string and update scan results.

2. Check whether the previous scan results of the repeated string contain matches.

3. Scan the right border of the repeated string and update scan results.

4. Update estimated scan results of skipped bytes within the repeated string.

In ACCH, scan results of previous bytes are stored in a 32K-entries Status-Vector. Its

values are determined by DFA-Depth(s) — the length of the shortest path from root to

state s. There are three possible status values:

• MATCH: a pattern was matched (the match ends in the scanned byte).

Chapter 2. Background 7

• UNCHECK: DFA-Depth(s) is below a threshold parameter CDepth (in practice,

CDepth is set to 2).

• CHECK: otherwise.

ACCH uses the Status-Vector in the following manner:

Left Border Scan — Upon processing a repeated string, ACCH scans j bytes until

reaching a state s where j ≥ DFA-Depth(s). From this point on, any pattern prefix is

already included in the repeated string area. We refer to the first j bytes of the repeated

string as the left border of the pointer.

Repeated Pattern Detection —This procedure examines the corresponding Status-Vector

values of the referred string, starting at its (j + 1)th byte. If some byte at position m

has a MATCH value, ACCH checks the length of that previously matched string. If it

is m or more then the previously matched string was not repeated entirely. Otherwise,

ACCH reports a matched pattern as in the referred string and marks that byte by a

MATCH status.

Right Border Detection — ACCH determines the position to start inspection again such

that no pattern (whose prefix is part of the repeated string suffix) is missed. This is

done by estimating the DFA-Depth of the repeated string’s last byte (say this estimation

is d) and scanning (from s0) the last d bytes of the repeated string.

Update Status of Skipped Bytes — Skipped bytes cannot obtain their status from the

scan procedure. Therefore, ACCH copies the status value for the skipped bytes from

the corresponding referred string. Note that since ACCH skips only after it ensures

that there is no pattern whose prefix started prior to the repeated string, the value of

the estimated DFA-Depth could be only equal or greater than its actual value (namely,

setting a byte as CHECK while it should be UNCHECK). Such a mistake leads to minor

reduction in the amount of skipped bytes but never to a miss-detection.

Chapter 3

Related Work

HTTP compression is a very popular method in the Internet. There are many works

(e.g., [16–18]) that suggest acceleration of the compression method itself to support high

request volume from high-end servers. These papers support the compression layer of

the data without referring to the context of processing the data itself as in the case of

DPI.

As noted in Chapter 2, HTTP compression uses LZ77 compression. There are vari-

ous works in the literature regarding pattern matching methods over the Lempel-Ziv

compression family [19–22]. However, the LZW/LZ78 variants are more attractive and

simple for pattern matching than LZ77, thus all the above proposals are not applicable

to our case. Klein and Shapira [23] suggested a modification to the LZ77 compression

to simplify matching in files. However, their suggestion is not implemented in today’s

Web traffic. Farach et. al [24] deal with pattern matching over LZ77. However, their

proposed algorithm matches only a single pattern and requires two passes over the com-

pressed text (file), which does not comply with the ‘on-the-fly’ processing requirement

of network applications.

The ACCH algorithm [15], discussed in details in Chapter 2, was the first to tackle

the problem of multi-pattern matching over compressed HTTP traffic. Following this

work, another algorithm, named SPC [25], analyzes the usage of the Wu-Manber pattern

matching algorithm [26] instead of the DFA-based Aho-Corasick[5] algorithm that lies at

8

Chapter 3. Related Work 9

the core of ACCH. SPC provides superior performance results over ACCH in the case of

normal traffic while its worst-case performance is very poor. Note that there is no variant

of the Wu-Manber algorithm that is applicable to regular expression matching, thus SPC

cannot be used in our case. The SOP [27] algorithm minimizes the memory footprint

required by the ACCH data structures. It may be combined with our algorithm, with

few adaptations, to save space. Finally, Berger and Mortensen [28] provide a hardware

scheme for the decompression phase, but do not deal with the scanning of the compressed

data itself.

All the above mentioned works are limited to string matching rather than to devices

based on regular-expression–matching. Sun et al. [29] suggested a method to perform

regular expression matching over compressed HTTP. Still that method handles only

simple cases, where the DFA is either at its root state or at a state with a direct

transition from the root state. Practically, the DPI engine traverses to deeper DFA

states. Furthermore, an attacker may easily craft an input that causes the DFA traversal

into areas that the algorithm of Sun et al. fails to support. Robustness against such

attacks is crucial as IDSs are a preferred target for denial-of-service attacks.

Chapter 4

The ARCH Framework

This chapter presents our framework: Acceleration of Regular expression matching over

Compressed HTTP (ARCH). Conceptually, ARCH is based on the same ideas as the

ACCH algorithm (as described at Chapter 2), which works only for string matching.

One of the key insights used in ACCH is that the DFA-Depth of a state represents the

longest suffix of the input that can still be part of a (future) match. This property holds

for string matches and it greatly simplifies the design of ACCH, as it enables both left-

and right-border resolution based solely on the state of the DFA.

Unfortunately, for regular expression matching this property does not hold since a state

may represent an input of variable lengths. This happens as a result of an alterna-

tion between different-length expressions or a Kleene closure (namely, ‘*’ or ‘+’).

An example of a state with an ambiguous depth in the presence of an alternation op-

erator is depicted in Fig. 4.1, which represents an automaton accepting the pattern

‘(apple|pear)s’. The DFA-Depth(s5) value is 4 since it is the shortest path length

from s0 to s5. Therefore, in the case of an input byte sequence of: ‘zpplesxa(7,5)s’,

the DFA-Depth after scanning the string ‘apple’ at the repeated string would be 4,

while the minimal input suffix that should have been scanned to reach s5 from root is

5. Wrong DFA-Depth may lead to miss-detection in ACCH.

An example of a state with an ambiguous depth in the presence of a Kleene closure is

demonstrated in Fig. 4.2. The DFA is for ‘ab+c+’ and an input of ‘bbbbbbcxa{8,7}’

10

Chapter 4. The ARCH Framework 11

S0

S1 S2 S3 S4 S6

S7 S8 S9

a
p

p
e

e
p

e a

r

p l e
S5

s

Figure 4.1: DFA for ‘(apple|pear)s’. Failure transitions are marked with red
dashed arrows. Failure transitions to states with DFA-Depths 0 and 1 are omitted for

clarity.

Figure 4.2: DFA for ‘ab+c+’. The right table indicates the input data and its
DFA-Depth as derived from the automaton while scanning the input.

for which the repeated string is ‘bbbbbbc’. The repeated string scan starts at s1. After

scanning two ‘b’ characters the automaton is still at s2, hence the DFA-Depth(s2) does

not change and is still 2. Thus, the left border detection of ACCH would have been

completed at this point, skipping the rest of the repeated string and resuming the scan

at the right border. This, of course, leads to a miss-detection, which is unacceptable.

Therefore, a key challenge behind ARCH is to calculate the minimum number of (pre-

vious) bytes that can be part of a future regular expression matching. This number

is captured by the Input-Depth parameter, which is defined precisely below. It is im-

portant to notice that unlike ACCH’s DFA-Depth, Input-Depth depends both on the

automaton state and the inspected input.

Definition 1. For a given automaton, let s0 be the start state and s be the current state

after scanning input text X with the automaton. Let Input-Depth(X, s) be the length

of the shortest suffix of X in which inspection starting at s0 ends at s.

We note that in the case of string matching, Input-Depth equals DFA-Depth. In fact,

Chapter 4. The ARCH Framework 12

the ARCH framework uses the ACCH algorithm to calculate possible scan skipping by

replacing the DFA-Depth parameter with the Input-Depth parameter along with specific

implementations for the different setups, as described in the sequel. Thus, if there is

no match, the Status-Vector value CHECK is determined according to whether Input-

Depth is greater than CDepth and, if not, the value is UNCHECK. The calculation of

Input-Depth is done differently in NFA-based and DFA-based implementations, where

in the former the value can be calculated precisely, while in the latter it can only be

estimated. In the next sections, we will discuss these calculations and estimations as

well as the correctness of the ARCH algorithm in detail.

4.1 Input-Depth Calculation for NFA-Based Imple-

mentations

Recall that one possibility to provide regular expression matching is to use NFAs, which

are usually compact but slow data structures. We start our discussion with such im-

plementations as they are simpler and help to grasp a better understanding of ARCH

(DFA-based Implementations pose extra complications on top of ARCH and are dis-

cussed in Section 4.2). Moreover, NFAs are currently used by the popular Snort IPS,

and therefore, accelerating their operations has a merit on its own. A commonly used

NFA implementation which we refer to is Active-States NFA. This implementation main-

tains a set of active states. During each step, if there is a valid transition from an active

state s to one or more states denoted by the set S ′, then this state is replaced in the

active-states set by the set S ′. In this case we refer to s as the predecessor of each state

in S ′. If there are no such transitions, the state simply becomes inactive, i.e. removed

from the active-states set.

ARCH maintains an Input-Depth value for each element in the active-states set. Namely,

given an input prefix Y , an active state s, an input byte b, and a subsequent active state

set S ′ such that there is a transition between s and each state s′ in S ′ with a label b,

the value of Input-Depth(Yb,s’) is set to Input-Depth(Y,s)+1. The only exception is at

Chapter 4. The ARCH Framework 13

the start state of the NFA (which is always active) and for which Input-Depth(Y,s0) is

always zero. Incrementing the Input-Depth by 1 is based on the following claim:

Claim 1. The Input-Depth of an active state can only grow by 1 compared to its prede-

cessor.

Proof. Given an NFA, its active state set S, and an input byte Ti+1. For each state s′,

that is a new state added to the active-states set, there exists at least one labeled transi-

tion from some state s which is already in the active states set, denoted by Ti+1. Assume

on the contrary that Input-Depth(Ti+1, s
′) > Input-Depth(Ti, s) + 1. Thus inspecting a

suffix of only Ti+1 from the active state s would end up in a set of states S ′′ that does

not include s′, in contrary to the assumption that Ti+1 leads to s′. Therefore this is a

contradiction, hence Input-Depth grows at most by 1 compared to its predecessor after

each step.

We define A(Y) as the active-states set after scanning the input Y. We define the

Global-Input-Depth(Y) as the longest relevant suffix of the input. We determine Global-

Input-Depth(Y) by choosing the maximal Input-Depth(Y,s) where s belongs to A(Y).

When ARCH needs to determine the left or right border of a pointer it uses the Global-

Input-Depth(Y). This is based on the following claim:

Claim 2. The Global-Input-Depth(Y) is bound by the maximal Input-Depth of the active

states set.

Proof. Assume on the contrary that the Global-Input-Depth(Y) denoted by x is larger

than the maximal Input-Depth of A(Y) such that x > max(Input-Depth(Y, s) | s ∈

A(Y)). Thus, for the current input, there is a suffix of length x that resulted in at least

one state s′ for which Input-Depth(Y,s’) = x. Then, s′ does not belong to A(Y) because

otherwise x = max(Input-Depth(Y, s) | s ∈ A(Y)), contrary to the assumption that

x > max(Input-Depth(Y, s) | s ∈ A(Y)). Therefore this implies that the construction

algorithm is incorrect, which contradicts the basic Thompson algorithm for pattern

matching [30]. Therefore the global NFA Input-Depth is bound by the maximal Input-

Depth of the active states set.

Chapter 4. The ARCH Framework 14

Table 4.1: Simulation of ARCH over Active States NFA.

Input Active States Input-Depth Max
Character Set Input-Depth

z s0, s1, s7 0, 1, 1 1
f s0, s7, s8 0, 2, 2 2
\n s0 0 0
z s0, s1, s7 0, 1, 1 1
a s0, s2, s7 0, 2, 2 2
b s0, s3, s7 0, 3, 3 3
c s0, s4, s7 0, 4, 4 4
f s0, s5, s7, s8 0, 5, 5, 5 5
e s0, s7, s9 0, 6, 6 6

S1 S2 S6

[^\n]

S9

S0

S8

S3 S4 S5
z a b c f g

ef

*

S7

z

Figure 4.3: NFA of pattern set: ‘zabcfg’, ‘z[^\n]*fg’.

Since the Input-Depth of each active state can only increase by at most 1 (claim 1), the

Global-Input-Depth(Y) of the NFA increases by at most 1 after inspection of a single

byte.

Fig. 4.3 depicts an NFA for the patterns ‘zabcfg’ and ‘z[^\n]*fg’. The execution of

ARCH for input ‘zf\nzabcfe’ and the NFA are illustrated in Table 4.1.

4.2 Input-Depth Estimation for DFA-Based Imple-

mentations

The task of Input-Depth calculation is more challenging when a DFA is used for regular

expression matching. This is because, unlike NFA, a DFA transition may result either

in increasing the Input-Depth (by one) or decreasing the Input-Depth (by any value).

In this section, we provide an upper bound on the Input-Depth using two methods: by

simple and complex states and by positive and negative transitions. As a rule, we use

Chapter 4. The ARCH Framework 15

the upper bound as the value of the Input-Depth in the ARCH framework. Thus, we

take a conservative approach and never miss a match. Yet, the tighter the upper bound

is, the higher the skip ratio we achieve.

4.2.1 Estimation based on Simple and Complex States

As noted above, Input-Depth cannot be always derived from DFA-Depth. Still, there are

cases were we can derive it safely. In fact, we could split the DFA states into two kinds:

those which represent a fixed string expression (where Input-Depth equals DFA-Depth)

and those which represent a set of strings with various lengths. For instance, in the

DFA of Fig. 4.2, states s0 and s1 are simple and states s2 and s3 are complex. More

formally, this is captured in the following definition:

Definition 2. A simple state s is a state for which all possible input strings that upon

scan from s0 terminate at s have the same length. All other states are complex.

Given the above definition, the following claim holds for complex states:

Claim 3. If a state s is complex then there is at least one path, whose scan from s0

terminates at s, where Input-Depth can be inflated (i.e. there are bytes or strings that

can be added to the input text such that the Input-Depth will grow while the DFA-Depth

remains the same).

Proof. Given a DFA and the current state s, which is complex. Assume on the contrary

that a scan from s0 which terminates at s cannot be inflated. Then there exists no

transition along all possible paths from s0 to s that may inflate the Input-Depth, i.e.

increase the Input-Depth without increasing the DFA-Depth. However, by the definition

of a complex state, s is only complex if it can be reached from some other complex

state t which was marked complex because of a backward transition to the current path

that may inflate the Input-Depth. Therefore, this is a contradiction and therefore there

exists at least one path whose scan from s0 terminates at s, where Input-Depth can be

inflated.

Chapter 4. The ARCH Framework 16

Input-Depth Estimation: According to claim 3 above, one cannot estimate Input-

Depth of a complex state by the automaton properties solely, as the upper bound would

always be infinity. To provide a better upper bound we estimate Input-Depth of complex

states online per each scan step. Since per input character the Input-Depth can grow by

at most 1 (as shown in claim 4 below), we estimate Input-Depth for complex states by

incrementing it by 1. Therefore, Input-Depth estimation by simple and complex states

works as follows: upon traversal to a simple state, Input-Depth is set to the DFA-Depth

of the state; upon traversal to a complex state, Input-Depth is incremented by one. We

note that by using this method Input-Depth may be over-estimated for complex state.

However, this is corrected whenever the automaton falls back to a simple state where

the the Input-Depth is derived exactly.

Claim 4. Inspection of a single byte increases Input-Depth by at most 1.

Proof. Let the last two transitions of inspecting T1...i+1 lead to states s and s′ respec-

tively. Assume on the contrary that Input-Depth(Y, s′) > Input-Depth(s) + 1. Thus

inspecting the input character of only Ti+1 from state s would end up in a state s′′ 6= s′.

Thus for input byte Ti+1 from state s there are two transitions to two different states

s′ and s′′, which is not possible in DFA. Therefore this is a contradiction, hence Input-

Depth grows at most by 1 after each step.

Detection of Simple/Complex states: Our algorithm detects simple and com-

plex states based on the DFA construction procedure as described by Thompson [30].

Thopmson’s construction has three significant stages: NFA construction from expres-

sions, ε-transitions removal, and finally, DFA construction based on the resulting NFA.

The basic idea of our algorithm is that we mark simple and complex states during NFA

construction, and then we transfer these marks to the final DFA. The NFA construc-

tion is defined over the three basic regular expression operators as in Fig. 4.4. The

operands are regular expressions R and S. All states are marked as simple by default

and stay that way unless otherwise specified. Complex states are marked according to

each regular expression operator as follows:

• Kleene Closure (Fig. 4.4(a)): Mark all states as complex.

Chapter 4. The ARCH Framework 17

R
� �

�

�

(a) Closure

S

�

�

u

r

s

�

�

R

(b) Alternation

rR S
�

(c) Concatenation

Figure 4.4: The basic operators considered in Thompson’s construction [30].

• Alternation (Fig. 4.4(b)): If either states r or s are complex, mark state u as

complex.

• Concatenation (Fig. 4.4(c)): If state r is complex, mark all states of S as com-

plex.

The simple/complex state marks are transferred through the Thompson construction

stage to the final DFA as follows: the ε-transition (a transition that is used in non-

deterministic automata for minimization purposes, which allows an automaton to change

its state without consuming an input symbol) removal stage only removes redundant

transitions and states, therefore, all remaining states are still marked. Next, the NFA is

transformed into a DFA using the subset-construction method, which traverses the entire

NFA and creates a DFA state for each possible set of active states. This DFA state is

marked simple if and only if all of the corresponding active NFA states are simple.

4.2.2 Estimation based on Positive and Negative Transitions

In the previous section we estimated an upper bound for Input-Depth using simple and

complex states. Although the method is intuitive and efficient, it may overestimate

Input-Depth in some cases, thus causing redundant scans. In this section we provide

a method to estimate a more accurate upper bound on the value of Input-Depth. It is

based on transitions rather than on states.

The positive and negative transition technique relies on the observation that Input-Depth

depends on the transition between two states rather than only the state in its endpoint.

For example, Fig. 4.5 shows that the transition from sx to sy should increase the Input-

Depth, the transition between sz to sy should leave the Input-Depth unchanged, and the

Chapter 4. The ARCH Framework 18

c

b
c

d

a-e

a
b c

e
x

x

x

sysx

sz

sw

Figure 4.5: DFA for pattern set {‘c[a-e]*x’, ‘bcd*x’, ‘abce*x’}.

transition between sw to sy should decrease the Input-Depth by 1. This implies that the

Input-Depth calculation cannot solely depend on sy.

Thus, we define two types of transitions: A positive-transition, which increases Input-

Depth by one (e.g. a byte was added to the pattern’s prefix) and negative-transition,

which either decreases or leaves Input-Depth unchanged. The challenge is to detect

negative-transitions and determine the exact change they apply on the Input-Depth

value.

Negative-transition detection is performed in two stages. In the first stage, for each

state we calculate a candidate label, denoted by c-label(s), which helps detecting neg-

ative transitions in the second stage. Let L(s) be the set of all input strings that are

accepted by s. We choose c-label(s) ∈ L(s) such that c-label(s).length ≤ l(s).length for

any l(s) ∈ L(s). The algorithm is depicted in Alg. 1. We refer to the second stage of the

Thompson construction (as described at Section 4.2.1), which is the subset-construction

that constructs a DFA from an NFA. The c-label(s) parameter is determined by inte-

grating a line into the subset-construction algorithm (as in Alg. 1 Line 8). The algorithm

uses the following basic NFA operations:

• ε-closure(T) — The set of NFA states reachable from each NFA state s in set T

on ε-transitions alone.

• move(T,a) — The set of NFA states to which there is a transition on input symbol

a from some state s in T .

Basically, the subset-construction algorithm traverses all NFA active state sets (Line 1)

using all possible input symbols (Line 3) in a breadth-first search (BFS) manner. Each

Chapter 4. The ARCH Framework 19

unique NFA active set T results in a corresponding DFA state t (Line 7). When a

transition from the DFA state t results in a DFA state u, which was never visited

before, the algorithm creates a c-label(u) by concatenating c-label(t) and the transition

label a (Line 8). Note that there may be more transitions that lead to DFA state u

along the construction. Still, since BFS is used for the NFA traversal, and the c-label(u)

was generated upon the first transition that reaches u, c-label(u) must be no longer than

any other label in L(u), as required.

Data: Dstates, Dtrans — containers for DFA states and transitions respectively.
Initially, ε-closure({s0}) is the only state in Dstates and it is unmarked.

1 while there is an unmarked state t in Dstates do
2 mark t;
3 foreach input symbol a do
4 U = ε-closure(move(t, a));
5 foreach state u in U do
6 if u is not in Dstates then
7 add u as an unmarked state to Dstates;
8 set c-label(u)=c-label(t)⊕ a;
9 end

10 Dtran[t, a] = u;
11 end
12 end
13 end

Algorithm 1: Modified subset construction algorithm. The symbol ⊕ means concate-
nation.

At the second stage, for each state t ∈ Dstates we iterate over all its transitions and

determine whether they are negative or positive. For that we define a structure called

Anchored-NFA, which is the NFA constructed from all regular expressions from the

related DFA after they were anchored; namely, after they were restricted to be matched

from the beginning of the input (represented by the ‘^’ operator in the PCRE [31]

package). Each transition (t, u) with label a is inspected as follows: the algorithm

traverses the Anchored-NFA using c-label(t) and receives an output of an active states

set R in the Anchored-NFA (Line 2). If there exist an iteration with label a from R,

then transition (t, u) is positive (Lines 4–6). The rest of the transitions are marked as

negative. The intuition behind this algorithm is that a negative transition from t to u

with label a applies that there is a suffix of c-label(t) ⊕ a that leads from the root to

u. Therefore, a string such as c-label(t)⊕ a cannot be accepted by the Anchored-NFA,

Chapter 4. The ARCH Framework 20

rather only its suffix. Thus, lack of transition at the Anchored-NFA applies a negative

transition at the DFA. This procedure is possible due to the following claim:

Claim 5. For every c-label(t) there exists a non-empty set of states R in the Anchored-

NFA where R=ε-closure(move(c-label(t)).

Proof. Given a DFA, and its set of states S. For every state s in S there is a c-label

value denoted by c-label(s). Assume on the contrary that there exists a state in the

DFA t, its c-label value is c-label(t), and that the set of states R=ε-closure(move(c-

label(t)) is empty. By definition, c-label is set during the subset-construction algorithm

by traversing the NFA in breadth-first search (BFS). If the state t was marked with c-

label(t), then there exists some state u in the NFA which corresponds to it. Since state

u was reached by an input of the series of bytes that is equal to c-label(t) then when

simulating the same byte sequence on the corresponding Anchored-NFA, R cannot be

empty because the Anchored-NFA is equivalent to the original NFA for patterns that

exist in the beginning of the input (as in this case). Therefore this is a contradiction,

and for every c-label(t) there exists a non-empty set of states R in the Anchored-NFA

where R=ε-closure(move(c-label(t)).

1 foreach state t in Dstates do
2 R=Anchored-NFA(move(c-label(t)));
3 foreach input symbol a do
4 u=Dtran[t,a];
5 if ε-closure(move(R, a))6= ∅ then
6 Dtran[t,a].positive=true;
7 else
8 Dtran[t,a].positive=false;
9 end

10 end
11 end

Algorithm 2: Marking positive/negative transitions

For example, consider the patterns ‘ab+c+d’ and ‘bc+e’. The resulting DFA from our

modified subset construction is depicted in Fig. 4.6(a) and its full-matrix representation

along with its calculated c-label(s) values is depicted at Fig. 4.6(c). After running

Alg. 2 using the DFA and the Anchored-NFA (depicted in Fig. 4.6(b)) all negative,

Chapter 4. The ARCH Framework 21

0

a
b c d

c eb

b

c

c
c - e

0 ,1 0 ,2 ,5 0 ,3 ,6 0 ,4

0 ,5 0 ,6 0 ,7

a
c - e

d , e

a
d , e

e

b

a
a

b

c - e

a

b

a

bd

a

b

c - e

(a) DFA

0

1 2 3 4

5 6 7

a

b c d

c eb

b

c

c

*

(b) Anchored-NFA

0,1 0,5 0 0 0

0,1 0,2,5 0 0 0

0,1 0,5 0,6 0 0

0,1 0,2,5 0,3,6 0 0

0,1 0,5 0,6 0 0,7

0,1 0,5 0,3,6 0,4 0,7

0,1 0,5 0 0 0

0,1 0,5 0 0 0

a b c d e

0

0,1

0,5

0,2,5

0,6

0,3,6

0,7

0,4

-

a

b

ab

bc

abc

bce

abcd

c-label(s)

(c) Transition table

Figure 4.6: Data structures used for the positive/negative transition marking for
pattern set: {‘ab+c+d’, ‘bc+e’}.

positive (underline) and loop (circled) transitions are marked. All negative transitions

are marked with dashed red arrows at Fig. 4.6(a). Note that the algorithm distinguishes

between the “self-loop” of states {0}, {0,1} and {0,5} as a negative transition and the

“self-loop” of states {0,2,5}, {0,3,6} and {0,6}, which are marked positive. This is

the desired outcome as in the former case Input-Depth should not increase upon loop

traversal, while in the latter it should.

1 U=Dtran[T,a];
2 if Dtran[T,a] is positive then
3 Input-Depth++;
4 else
5 if U is simple then
6 Input-Depth=U.DFA−Depth;
7 else
8 Decrease=c-label(T).len− c-label(U).len;
9 Input-Depth=Input-Depth−Decrease;

10 end
11 end

Algorithm 3: ARCH-DFA Input-Depth Maintenance

At this point, each transition at the DFA is marked as either positive or negative. The

next step would be to determine the Input-Depth upon DFA traversal as described in

Alg. 3. The straightforward case is upon a traversal over a positive transitions, for

which the Input-Depth is incremented by one (Line 3). To handle negative transitions

we use the classification of simple and complex DFA states as explained at the previous

subsection. If a negative transition leads to a simple state, the Input-Depth is set to this

Chapter 4. The ARCH Framework 22

state’s DFA-Depth (Line 6). Upon a negative transition to a complex state the Input-

Depth should be decremented by the delta between the labels’ lengths as described at

Lines 8–9. We note that this algorithm does not support some corner cases (e.g., when

a regular expression contains multiple loops and has a negative transition to another

regular expression that contains only some of these loops), thus our algorithm just

increments Input-Depth by one as it is its the maximal possible value. For that matter

ARCH always provides an upper bound on the value of Input-Depth, and therefore,

never misses a match.

Chapter 5

ARCH-DFA System Architecture

Observe that the problematic case of ARCH is where the algorithm cannot skip any

bytes. This case may happen upon a closure operator over a wide range of characters

(such as ‘.*’), which causes its descendant states to be complex and have only positive

transitions, hence the Input-Depth never decreases. For instance, consider the pattern

‘AdminServlet.*(userid|adminurl)’ (which was extracted from Snort’s rule set); after

matching the prefix ‘AdminServlet’, Input-Depth cannot decrease since any character

can be part of the pattern and may be followed by either ‘userid’ or ‘adminurl’. Thus,

ARCH cannot skip scanning characters in such cases as it never finds the left border of

a pointer (see Chapter 4). This implies that whenever a closure operator acts upon a

wide range of characters, the effectiveness of ARCH reduces. In some cases, the benefit

of ARCH becomes smaller than its overhead. In such cases we would like to just run

a regular DFA rather than ARCH-DFA to avoid the ARCH-DFA overhead, which is

approximately 11% (see details in Chapter 6) due to additional memory accesses to the

status-vector. We note that only 8.1% of the rules in the set that was derived from

Snort and fits compressed Web traffic (i.e. Web traffic from server to client) contains

‘.*’ expressions. A more frequent wide-range Kleene closure is of the form ‘[^\n]*’.

Still, since we deal with HTML data, the new-line occurs on average after 75 charac-

ters, and therefore, the automaton “escapes” the above-mentioned case of only positive

transitions, and therefore, does not harm much the ARCH performance, as described

in Chapter 6. Additionally, when Input-Depth increases along scanning, ARCH never

23

Chapter 5. From Theory to Practice: ARCH-DFA System Architecture 24

Prefix-

ARCH-DFA

Tail-DFATail-DFA
Tail-

ARCH-DFA

Tail-

ARCH-DFA
Tail-DFA

Tail-

ARCH-DFA

Figure 5.1: Illustration of the Hybrid ARCH-DFA System architecture

detects a pointer’s left border, implying status vector checkups are redundant. We note

that nowadays, the incurred overhead in the above-mentioned case is practically negli-

gible, however, future pattern sets or implementations might be different.

ARCH is inspired by the design of Hybrid-FA by Becchi et al. [12]. ARCH system breaks

the regular expressions into a prefix set of all expressions, which are represented by a

single prefix ARCH-DFA (which is analogues to the head-DFA in [12]), and a set of tail

ARCH-DFAs that represent the entire regular expressions set. The prefix ARCH-DFA

is always active, while only a small part of the tail ARCH-DFAs may be active. This

way the resulting hybrid automaton has a small memory footprint as compared to the

corresponding DFA, with the penalty of traversing several automata in parallel. Using

the above-mentioned architecture leaves us the freedom to decide in advance whether to

use a tail ARCH-DFA or a tail DFA in the case where the overhead of ARCH is higher

than its benefits as depicted in Fig. 5.1.

Chapter 6

Experimental Results

We evaluate the performance benefits of ARCH on rule-sets from the Snort IPS. The

Snort24, Snort31, and Snort34 rule-sets were taken from [32]. The Snort135 rule-set

was extracted from Snort’s "web-client.rules" (February 2014). These rules relate to

Web traffic. Table 6.1 summarizes the basic characteristics of the rule-sets used in the

experiments.

6.1 Data Set

The data set contains 2301 compressed HTML pages, downloaded from 500 popular

sites taken from the Alexa Web-site [33]. The data size is 358MB in uncompressed

form and 61.2MB in compressed form. Since the algorithm is based on repeated byte

sequences, it may only perform as well as the compression ratio of the input data and

is therefore mainly aimed at highly-compressible inputs such as text.

Table 6.1: Rule-sets characteristics

Rule Set Snort24 Snort31 Snort34 Snort135
Number of Rules 24 31 34 135
% Rules with Kleene Closure 37.5 41.9 38.2 89.6
% Rules with Char Ranges ≥ 50 50 48.4 41.1 51.9

25

Chapter 6. Experimental Results 26

6.2 ARCH performance

We compare ARCH with a baseline algorithm, which uses the same underlying automa-

ton scheme (NFA or DFA) without performing any byte skipping. We define Rs as the

scanned character skip ratio — the ratio of characters skipped using ARCH out of the

total size of the input data. We define Rt as the saved scan time ratio — ARCH’s

running time compared to the baseline algorithm’s running time.

ARCH-NFA was implemented using active states NFA as its baseline algorithm, as

described in Section 4.1. Table 6.2 shows statistics regarding its performance. The

average skip rate Rs is 77.99%, which results in a significant performance improvement

Rt of 77.21%. Compared to the overall performance, the overhead of ARCH-NFA is

less than 1%. The overall processing time of ARCH-NFA is relatively long compared to

the DFA based implementations (40 times longer) and is therefore less preferred. On

the other hand, the space requirements of ARCH-NFA are 18 times lower than those

of ARCH-DFA. The Snort135 rule-set was not tested with ARCH-NFA due to the high

memory requirements of representing many rules in a single automaton. This work does

not aim to solve the low performance of NFA based algorithms, instead it aims to show

that the ARCH algorithm fits and may be used by both approaches.

ARCH-DFA was implemented using A-DFA [10] as its baseline compression algorithm.

The implementation performs Input-Depth estimation based on both of the methods

described in Section 4.2. The results shown below are based on the simple and complex

states method which is described in Section 4.2.1. This estimation has a lower over-

head while the benefit gained by the more precise estimation of the positive/negative

Table 6.2: ARCH Performance

Rule Set Snort24 Snort31 Snort34 Snort135
NFA Characters Skipped 79.44% 75.86% 78.66% -

Time Saved 79.29% 74.56% 77.78% -
DFA Setup Single Single Single Hybrid

Characters Skipped 79.04% 75.64% 78.38% 78.46%
Time Saved 70.97% 67.46% 69.14% 70.08%

Number of Matches 168603 1333 8000 77801
Run-time NFA/DFA 38.46 45.45 40 -

Chapter 6. Experimental Results 27

transitions method is not significant on our data sets. However, in order to prove the

theoretical advantage of the positive/negative transitions method for certain edge cases,

we created a synthetic data set which includes these edge cases. The result shows an

improvement of approximately 18% in the average Input-Depth which allows the ARCH

algorithm to skip more bytes and reduce the scan time.

We implemented two system setups for ARCH-DFA. The first uses a single DFA for the

entire rule-set and is therefore useful for pattern sets with moderate size, which do not

exhibit state explosion. Table 6.2 shows statistics regarding the performance of ARCH-

DFA. ARCH-DFA achieved an average skip rate Rs of 77.69% and a performance boost

Rt of 69.19%. In this case the overhead is more notable and is almost 11%. As discussed

in Chapter 5, this is mainly due to additional memory references to the Status-Vector

as compared to the baseline algorithm.

The second setup uses a hybrid design consisting of a prefix ARCH-DFA, which encodes

the prefixes of the pattern set, and multiple tail ARCH-DFAs as described in Chapter 5.

This setup is useful for pattern sets with considerable size and high complexity, which

cause state-space explosion (e.g. Snort135). The average skip ratio Rs is 77.88% while

the average gained performance boost Rt is 69.41%. The overhead in this case is also

11%. We note that since the performance improvement of the algorithm depends on

the properties of both the input string and the regular expressions in the pattern set,

the method may offer a lower performance gain when detecting patterns that contain a

short string prefix followed by Kleen Closure.

Chapter 6. Experimental Results 28

��

��

��

��

��

��

��

��

��

��

���

� � 	 � ��

C
u
m

u
la

ti
v
e

%

Input Depth

Snort24 Snort31 Snort34

(a) NFA

��

��

��

��

��

��

��

��

��

��

���

� � 	 � ��

C
u
m

u
la

ti
v
e

%

Input Depth

Snort24 Snort31 Snort34

(b) DFA

Figure 6.1: Input-Depth Cumulative Distribution

Chapter 7

Additional Applications

Beside regular expression matching over compressed traffic, Input-Depth is important

for many additional applications. In this chapter we describe three such applications:

1. Extraction of a matched pattern

2. Patterns across packet fragmentation

3. Efficient Pre-Filtering

7.1 Extraction of a matched pattern

A surprising fact is that there is no straightforward method to extract the string that

relates to a matched pattern after detecting a match in the automaton (by reaching a

matching state) without having to rescan the packet. The only information about the

input that is available at this point is the position in the input in which the match

occurred. Input-Depth allows this functionality as it indicates the number of bytes that

should be extracted from the input up to the match position.

29

Chapter 7. Additional Applications 30

7.2 Patterns across packet fragmentation

Studies [34] have shown that Intrusion Prevention Systems may be evaded by using

packet fragmentation. Such attacks are implemented by splitting the malicious pattern

across several packets. A naive approach to handle such threats is to completely re-

assemble the packets into one stream. This method may require high memory usage

and severely impact performance in case of long matches across several packets. There-

fore, an important related application may be to determine the number of bytes that

should be stored to handle cross-packet DPI. Instead of buffering entire packets, a DPI

engine may just store a matched pattern-prefix at each packet’s suffix.

7.3 Efficient Pre-Filtering

Another important application is efficient pre-filtering for intrusion prevention systems.

Systems such as Snort perform pre-filtering on a simpler automaton in order to identify

the existence of a prefix of a pattern in the current packet. If the pre-filtering identifies

such a match, the entire packet is re-scanned against the relevant regular expressions.

Instead, an efficient pre-filtering method may use Input-Depth in order to scan only the

relevant bytes in the second phase instead of having to re-scan the entire packet. This

has an even larger benefit in the case where the match spans across several packets.

Chapter 8

Conclusion

ARCH started as an effort to adapt prior art of string matching over compressed traffic

to the regular expression matching domain. Along this process we uncovered a wide

set of complexities of both algorithmic and architectural aspects that the new domain

holds. We aimed at providing a generic method that fits a wide range of solutions,

therefore we analyzed both NFA and DFA setups and aimed at either moderate simple

pattern sets and large complex ones. Three architectures are proposed: ARCH-NFA,

ARCH-DFA and the Hybrid-ARCH-DFA.

This work not only provides the theoretical background behind the different methods,

it also provides a setup that tests the performance benefits of the provided algorithms

on real life Web traffic.

An important product of this research is the discovery of the Input-Depth parame-

ter. Beside the fact that it is a crucial construct for regular expression matching over

compressed traffic, we found that there are many other applications for which it is

important.

31

Bibliography

[1] W3Tech. Usage of Compression for websites, 2014. http://w3techs.com/

technologies/details/ce-compression/all/all.

[2] SNORT. Snort: The Open Source Network Intrusion Detection System. http:

//www.snort.org.

[3] HyperText Transfer Protocol – [http]/1.1, June 1999. [RFC] 2616,

http://www.ietf.org/rfc/rfc2616.txt.

[4] P. Deutsch. Gzip file format specification, May 1996. RFC 1952,

http://www.ietf.org/rfc/rfc1952.txt.

[5] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to

bibliographic search. Commun. ACM, 18:333–340, June 1975. ISSN 0001-0782.

doi: http://doi.acm.org/10.1145/360825.360855. URL http://doi.acm.org/10.

1145/360825.360855.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Pearson/Addison Wesley, 3rd edi-

tion, 2007.

[7] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection

signatures with context. In CCS, pages 262–271, 2003.

[8] R. Smith, C. Estan, and S. Jha. Xfa: Faster signature matching with extended

automata. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages

187–201, May 2008. doi: 10.1109/SP.2008.14.

32

http://w3techs.com/technologies/details/ce-compression/all/all
http://w3techs.com/technologies/details/ce-compression/all/all
http://www.snort.org
http://www.snort.org
http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/360825.360855

Bibliography 33

[9] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan

Turner. Algorithms to accelerate multiple regular expressions matching for deep

packet inspection. In Proceedings of the 2006 conference on Applications, tech-

nologies, architectures, and protocols for computer communications, pages 339–350,

2006.

[10] Michela Becchi and Patrick Crowley. An improved algorithm to accelerate regular

expression evaluation. In ACM/IEEE ANCS, pages 145–154, 2007.

[11] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast

and memory-efficient regular expression matching for deep packet inspection. In

Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and

communications systems, pages 93–102, 2006.

[12] Michela Becchi and Patrick Crowley. A hybrid finite automaton for practical deep

packet inspection. In ACM CoNEXT, pages 1:1–1:12, December 2007.

[13] Yehuda Afek, Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Ko-

ral. Mca2: Multi-core architecture for mitigating complexity attacks. In Pro-

ceedings of the Eighth ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, ANCS ’12, pages 235–246, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1685-9. doi: 10.1145/2396556.2396603. URL

http://doi.acm.org/10.1145/2396556.2396603.

[14] R. Smith, C. Estan, and S. Jha. Backtracking algorithmic complexity attacks

against a nids. In Computer Security Applications Conference, 2006. ACSAC ’06.

22nd Annual, pages 89–98, Dec 2006. doi: 10.1109/ACSAC.2006.17.

[15] Anat Bremler-Barr and Yaron Koral. Accelerating multipattern matching on com-

pressed http traffic. IEEE/ACM Trans. Netw., 20(3):970–983, 2012.

[16] P. Rauschert, Y. Klimets, J. Velten, and A Kummert. Very fast gzip compression

by means of content addressable memories. In TENCON 2004. 2004 IEEE Region

10 Conference, volume D, pages 391–394 Vol. 4, Nov 2004. doi: 10.1109/TENCON.

2004.1414952.

http://doi.acm.org/10.1145/2396556.2396603

Bibliography 34

[17] J.G. Franklin. Hardware accelerated compression, May 23 2006. URL http://

www.google.com/patents/US7051126. US Patent 7,051,126.

[18] K. Ma and W.W.W. Chen. Method and apparatus for efficient hardware based

deflate, December 11 2007. URL http://www.google.com/patents/US7307552.

US Patent 7,307,552.

[19] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in

z-compressed files. Journal of Computer and System Sciences, pages 299–307, 1996.

[20] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-and approach to pattern

matching in lzw compressed text. In 10th Annual Symposium on Combinatorial

Pattern Matching (CPM 99), 1999.

[21] G. Navarro and M. Raffinot. A general practical approach to pattern matching over

ziv-lempel compressed text. In 10th Annual Symposium on Combinatorial Pattern

Matching (CPM 99), 1999.

[22] G. Navarro and J. Tarhio. Boyer-moore string matching over ziv-lempel compressed

text. In Proceedings of the 11th Annual Symposium on Combinatorial Pattern

Matching, pages 166 – 180, 2000.

[23] ST. Klein and D. Shapira. A new compression method for compressed matching.

In Proceedings of data compression conference DCC-2000, Snowbird, Utah, pages

400–409, 2000.

[24] M. Farach and M. Thorup. String matching in lempel-ziv compressed strings. In

27th annual ACM symposium on the theory of computing, pages 703–712, 1995.

[25] Anat Bremler-Barr, Yaron Koral, and Victor Zigdon. Shift-based pattern matching

for compressed web traffic. In HPSR, pages 222–229. IEEE, 2011. URL http:

//dblp.uni-trier.de/db/conf/hpsr/hpsr2011.html#Bremler-BarrKZ11.

[26] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical

Report TR-94-17, Department of Computer Science, University of Arizona, May

1994.

http://www.google.com/patents/US7051126
http://www.google.com/patents/US7051126
http://www.google.com/patents/US7307552
http://dblp.uni-trier.de/db/conf/hpsr/hpsr2011.html#Bremler-BarrKZ11
http://dblp.uni-trier.de/db/conf/hpsr/hpsr2011.html#Bremler-BarrKZ11

Bibliography 35

[27] Yehuda Afek, Anat Bremler-Barr, and Yaron Koral. Space efficient deep packet

inspection of compressed web traffic. Comput. Commun., 35(7):810–819, April

2012. ISSN 0140-3664. doi: 10.1016/j.comcom.2012.01.017. URL http://dx.doi.

org/10.1016/j.comcom.2012.01.017.

[28] M.S. Berger and B.B. Mortensen. Fast pattern matching in compressed data pack-

ages. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 1591–1595, Dec

2010. doi: 10.1109/GLOCOMW.2010.5700208.

[29] Yan Sun and Min Sik Kim. Dfa-based regular expression matching on compressed

traffic. In Communications (ICC), 2011 IEEE International Conference on, pages

1–5, June 2011. doi: 10.1109/icc.2011.5962596.

[30] Ken Thompson. Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422, June 1968. ISSN 0001-0782. doi: 10.1145/363347.

363387. URL http://doi.acm.org/10.1145/363347.363387.

[31] PCRE. PCRE - perl compatible regular expressions. http://www.pcre.org.

[32] Michela Becchi. Regular expression processor. http://regex.wustl.edu.

[33] Alexa. Alexa: The web information company, Dec 2011. http://www.alexa.com/

topsites.

[34] T. Ptacek and T. Newsham. Insertion, evasion and denial of service: Eluding

network intrusion detection. Secure Networks, Inc., Jan 1998.

http://dx.doi.org/10.1016/j.comcom.2012.01.017
http://dx.doi.org/10.1016/j.comcom.2012.01.017
http://doi.acm.org/10.1145/363347.363387
http://www.pcre.org
http://regex.wustl.edu
http://www.alexa.com/topsites
http://www.alexa.com/topsites

תקציר
רגולריים. ביטויים בעזרת דחוסה HTTP בתעבורת תבניות בזיהוי עוסקת זו עבודה

ברשת, הדחוסה התעבורה אחוז תחילה, עיקריות. סיבות משתי נחוץ זה מסוג זיהוי

גודל את לצמצם מנת על מתמדת עליה במגמת נמצא אינטרנט, באתרי ובמיוחד

לצרכים ברשת המידע תוכן את סורקים אשר סריקה שמנועי מכיוון שנית, התעבורה.

בגלל רגולריים בביטויים קבע כדרך משתמשים אבטחה, למטרות ובמיוחד שונים,

פשוטה. בצורה תבניות של גדול מספר לבטא שלהם היכולת

תהליך את להאיץ מטרתה אשר אלגוריתמית תשתית זו בעבודה מציגים אנחנו

דחיסת בזמן נאסף אשר מידע מנצלת התשתית זה. מסוג ביטויים של החיפוש

בהצבעות־ משתמש אשר GZIP אלגוריתם בעזרת לרוב דחוס HTTP התעבורה.

יותר קטן מספר בעזרת במידע עצמן על חוזרות אשר מחרוזות לייצג מנת על אחורה

(קודמים) תווים של המקסימלי המספר חישוב על מבוסס שלנו האלגוריתם תווים. של

בוחנים אנחנו כאשר תבנית. של מזיהוי חלק להוות עשויים אשר תו, כל עבור רלוונטים,

חלקים על לדלג ניתן ולכן בחשבון להילקח צריכים אלו תווים רק הצבעה־אחורה,

זמן לחסוך ניתן כך ידי על פוטנציאלי. זיהוי של לפספוס חשש ללא מהמידע נרחבים

הפרוס. המידע כל את סורק אשר נאיבי אלגוריתם לעומת הסריקה במהלך רב

של שונים מימושים עם עובדת שלנו התשתית כי זו בעבודה מראים אנחנו בנוסף,

המקרים בשני .DFA או NFA מסוג אוטומטים על מבוססים אשר סריקה תשתיות

להשתמש ניתן בנוסף, . 70% מ למעלה של ביצועים שיפור מספקת שלנו התשתית

לאחר הרלוונטית מחרוזת חילוץ כגון נוספות חשובות אפליקציות לטובת בתשתית

ועוד. זיהוי,

הרצליה הבינתחומי המרכז

המחשב למדעי ארזי אפי ביה"ס

ביטויים בעזרת מחרוזות חיפוש האצת
HTTP תעבורת גבי מעל רגולרים

דחוסה

תואר לקראת מהדרישות חלק כמילוי המוגשת גמר עבודת סיכום

המחשב במדעי מחקרי במסלול מוסמך

כוכבא עומר ידי על

קורל ירון וד"ר ברמלר־בר ענת פרופ' בהנחיית בוצעה העבודה

2016 בינואר 6

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Compressed HTTP
	2.2 Deep Packet Inspection Algorithms
	2.3 String Matching Over Compressed Traffic

	3 Related Work
	4 The ARCH Framework
	4.1 Input-Depth Calculation for NFA-Based Implementations
	4.2 Input-Depth Estimation for DFA-Based Implementations
	4.2.1 Estimation based on Simple and Complex States
	4.2.2 Estimation based on Positive and Negative Transitions

	5 ARCH-DFA System Architecture
	6 Experimental Results
	6.1 Data Set
	6.2 ARCH performance

	7 Additional Applications
	7.1 Extraction of a matched pattern
	7.2 Patterns across packet fragmentation
	7.3 Efficient Pre-Filtering

	8 Conclusion
	Bibliography

