Fibonacci Scholar
The Hebrew University 2015-2016
Now at CNR.it
Fibonacci Scholar
The Hebrew University 2015-2016
Now at CNR.it
It is widely expected that the core of next-generation cellular networks will be (i) based on software-defined networking (SDN) and network function virtualization (NFV), and (ii) shared between multiple parties, including traditional mobile operators and content providers. Such parties are normally competing with each other; however, they can obtain significant, mutual benefits even from limited and defined cooperation. We study how such a coopetition relationship influences the decisions of (i) how to place virtual network functions on physical hardware and (ii) how to steer traffic between them. We present an efficient, online algorithm to make such placement and steering decisions, and study its performance in a realistic scenario. We find that our algorithm would allow mobile operators and content providers to reduce their reliance on third-party vendors by 60%.
Future cellular networks will be owned by multiple parties, e.g., two mobile operators, each of which controls some elements of the access and backhaul infrastructure. In this context, it is important that as much traffic as possible is processed by the same party that generates it, i.e., that the coupling between traffic and network ownership is maximized. Software-defined backhaul networks can attain this goal; however, existing management schemes ignore ownership altogether. We fill this gap by presenting an ownership- aware network management scheme, maximizing the amount of traffic that is processed by the same party it belongs to.
DEEPNESS Lab 2022 © all rights reserved