Publications by Year
Malicious actors carrying out distributed denial-of-service (DDoS) attacks are interested in requests that consume a large amount of resources and provide them with ammunition. We present a severe complexity attack on DNS resolvers, where a single malicious query to a DNS resolver can significantly increase its CPU load. Even a few such concurrent queries can result in resource exhaustion and lead to a denial of its service to legitimate clients. This attack is unlike most recent DDoS attacks on DNS servers, which use communication amplification attacks where a single query generates a large number of message exchanges between DNS servers.
The attack described here involves a malicious client whose request to a target resolver is sent to a collaborating malicious authoritative server; this server, in turn, generates a carefully crafted referral response back to the (victim) resolver. The chain reaction of requests continues, leading to the delegation of queries. These ultimately direct the resolver to a server that does not respond to DNS queries. The exchange generates a long sequence of cache and memory accesses that dramatically increase the CPU load on the target resolver. Hence the name non-responsive delegation attack, or NRDelegationAttack.
We demonstrate that three major resolver implementations, BIND9, Unbound, and Knot, are affected by the NRDelegationAttack, and carry out a detailed analysis of the amplification factor on a BIND9 based resolver. As a result of this work, three common vulnerabilities and exposures (CVEs) regarding NRDelegationAttack were issued by these resolver implementations. We also carried out minimal testing on 16 open resolvers, confirming that the attack affects them as well.
The objective of this study is to propose an efficient solution for Low-Rate Attacks (LRA), such as scraping attacks that aim to download all the Uniform Resource Identifiers (URIs) of a website. Attackers attempt to evade detection by behaving like regular users while browsing a small set of distinct pages (URI) at small time scales. However, at larger time scales, the attacker becomes a distinct heavy hitter that requests numerous distinct URIs. Although there are several space-efficient and time-efficient methods to detect distinct heavy hitters, they still require excessive memory to track all users over a large time scale. In this research, an innovative streaming algorithm is proposed to detect the attacker.
With the continuous increase in reported Common Vulnerabilities and Exposures (CVEs), security teams are overwhelmed by vast amounts of data, which are often analyzed manually, leading to a slow and inefficient process. To address cybersecurity threats effectively, it is essential to establish connections across multiple security entity databases, including CVEs, Common Weakness Enumeration (CWEs), and Common Attack Pattern Enumeration and Classification (CAPECs). In this study, we introduce a new approach that leverages the RotatE \cite{RotatE} knowledge graph embedding model, initialized with embeddings from Ada language model developed by OpenAI \cite{embeddingada}. Additionally, we extend this approach by initializing the embeddings for the relations. \ignore{This method surpasses previous attempts and provides a valuable tool for security teams to efficiently identify and respond to cybersecurity threats.
Unlike previous works that only handled CVEs present in the training set, our approach can deal with unseen entities. Furthermore, we contribute a comprehensive dataset and our models for future benchmarking.
With the advent of cloud and container technologies, enterprises develop applications using a microservices architecture, managed by orchestration systems (e.g. Kubernetes), that group the microservices into clusters. As the number of application setups across multiple clusters and different clouds is increasing, technologies that enable communication and service discovery between the clusters are emerging (mainly as part of the Cloud Native ecosystem).
In such a multi-cluster setting, copies of the same microservice may be deployed in different geo-locations, each with different cost and latency penalties. Yet, current service selection and load balancing mechanisms do not take into account these locations and corresponding penalties.
We present \emph{MCOSS}, a novel solution for optimizing the service selection, given a certain microservice deployment among clouds and clusters in the system. Our solution is agnostic to the different multi-cluster networking layers, cloud vendors, and discovery mechanisms used by the operators. Our simulations show a reduction in outbound traffic cost by up to 72% and response time by up to 64%, compared to the currently-deployed service selection mechanisms.
Auto-scaling is a fundamental capability of cloud computing which allows consuming resources dynamically according to changing traffic needed to be served.
By the micro-services architecture paradigm, software systems are built as a set of loosely-coupled applications and services that can be individually scaled.
In this paper, we present a new attack the \emph{Tandem Attack} that exploits the Tandem behavior of micro-services with different scaling properties. Such issues can result in Denial of Service (DoS) and Economic Denial of Sustainability (EDoS) created by malicious attackers or self-inflicted due to wrong configurations set up by administrators. We demonstrate the Tandem attack using a popular AWS serverless infrastructure modeling two services and show that removing servers’ management responsibility from the cloud users does not mitigate the different scaling properties challenge and can even make the problem harder to solve.
This paper presents a new localhost browser based vulnerability and corresponding attack that opens the door to new attacks on private networks and local devices. We show that this new vulnerability may put hundreds of millions of internet users and their IoT devices at risk. Following the attack presentation, we suggest three new protection mechanisms to mitigate this vulnerability.
This new attack bypasses recently suggested protection mechanisms designed to stop browser-based attacks on private devices and local applications.
The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
This demo introduces MUDIS, a MUD Inspection System that inspects the network behavior of devices, based on their formal description in the MUD file. We present several use-cases in which MUDIS is useful, including examining the impact of device location, the impact of a firmware update, the correlation of network behavior between different devices of the same manufacture, and more.
MUDIS inspects two MUD files, clusters together and graph- ically visualizes identical, similar, and dissimilar rules. It then calculates a similarity score that measures the similarity between them both. It also generalizes the two MUD files where possible, such that the resulting generalized MUD covers all the permitted (white-list) network behavior for both MUDs.
Our open-source MUDIS tool and proof-of-concept dataset are available for researchers and IoT manufacturers, allowing anyone to gain meaningful insights over the network behavior of IoT devices.
Monitoring medical data, e.g., Electrocardiogram (ECG) signals, is a common application of Internet of Things (IoT) devices. Compression methods are often applied on the massive amounts of sensor data generated prior to sending it to the Cloud to reduce the storage and delivery costs. A lossy compression provides high compression gain (CG), but may reduce the performance of an ECG application (downstream task) due to information loss. Previous works on ECG monitoring focus either on optimizing the signal reconstruction or the task’s performance. Instead, we advocate a self-adapting lossy compression solution that allows configuring a desired performance level on the downstream tasks while maintaining an optimized CG that reduces Cloud costs.
We propose Dynamic-Deep, a task-aware compression geared for IoT-Cloud architectures. Our compressor is trained to optimize the CG while maintaining the performance requirement of the downstream tasks chosen out of a wide range. In deployment, the IoT edge device adapts the compression and sends an optimized representation for each data segment, accounting for the downstream task’s desired performance without relying on feedback from the Cloud. We conduct an extensive evaluation of our approach on common ECG datasets using two popular ECG applications, which includes heart rate (HR) arrhythmia classification. We demonstrate that Dynamic-Deep can be configured to improve HR classification F1-score in a wide range of requirements. One of which is tuned to improve the F1-score by 3 and increases CG by up to 83% compared to the previous state of-the-art (autoencoder-based) compressor. Analyzing DynamicDeep on the Google Cloud Platform, we observe a 97% reduction in cloud costs compared to a no compression solution. To the best of our knowledge, Dynamic-Deep is the first end-to end system architecture proposal to focus on balancing the need for high performance of cloud-based downstream tasks and the desire to achieve optimized compression in IoT ECG monitoring settings.
The performance of distributed and data-centric applications often critically depends on the interconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal and spatial locality in the communication pattern, and to provide topological shortcuts for frequently communicating racks. The key challenge, however, concerns how to realize demand-awareness in RDCNs in a scalable fashion.
Distributed denial of service (DDoS) attacks, especially distributed reflection denial of service attacks (DRDoS), have increased dramatically in frequency and volume in recent years. Such attacks are possible due to the attacker’s ability to spoof the source address of IP packets. Since the early days of the internet, authenticating the IP source address has remained unresolved in the real world. Although there are many methods available to eliminate source spoofing, they are not widely used, primarily due to a lack of economic incentives.
We propose a collaborative on-demand route-based defense technique (CORB) to offer efficient DDoS mitigation as a paid-for-service, and efficiently assuage reflector attacks before they reach the reflectors and flood the victim. The technique uses scrubbing facilities located across the internet at internet service providers (ISPs) and internet exchange points (IXPs).
By transmitting a small amount of data based on border gateway protocol (BGP) information from the victim to the scrubbing facilities, we can filter out the attack without any false-positive cases. For example, the data can be sent using DOTS, a new signaling DDoS protocol that was standardized by the IETF. CORB filters the attack before it is amplified by the reflector, thereby reducing the overall cost of the attack. This provides a win-win financial situation for the victim and the scrubbing facilities that provide the service.
We demonstrate the value of CORB by simulating a Memcached DRDoS attack using real-life data. Our evaluation found that deploying CORB on scrubbing facilities at approximately 40 autonomous systems blocks 90% of the attack and can reduce the mitigation cost by 85%.
Wi-Fi (IEEE 802.11) is the most-used protocol for wireless internet access on customer premises. The MAC address of each connected device, which used to be static, is being recently randomized (by the device’s operating system) as frequently as daily to prevent tracking and fingerprinting of devices and users. While this feature might be useful in public areas, it disturbs some day-to-day functionalities, such as firewalls, parental control, and similar applications that require a static identifier per device. In this work, we present methods to ensure the functionalities of these applications, even when the MAC address is changed every time the device connects to the network. Our methods work even if the latest MAC randomization techniques are applied and provide these device identifications only to the gateway router. (Potentially malicious) devices that are connected to the same LAN, still see the randomized MAC
Analyzing the network behavior of IoT devices, including which domains, protocols, and ports the device communicates with, is a fundamental challenge for IoT security and identification. Solutions that analyze and manage these areas must be able to learn what constitutes normal device behavior and then extract rules and features to permit only legitimate behavior or identify the device. The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
We demonstrate that learning what is normal behavior for an IoT device is more challenging than expected. In many cases, the same IoT device, with the same firmware, can exhibit different behavior or connect to different domains with different protocols, depending on the device’s geographical location.
Then, we present a technique to generalize MUD files. By processing MUD files that originate in different locations, we can generalize and create a comprehensive MUD file that is applicable for all locations.
To conduct the research, we created MUDIS, a MUD Inspection System tool, that compares and generalizes MUD files. Our open-source MUDIS tool and dataset are available online to researchers and IoT manufacturers, allowing anyone to visualize, compare, and generalize MUD files.
We investigate the negative caching (caching of NXdomain
responses) behavior on nine large open DNS resolvers. We
measure the amount of time an NXDomain response is kept
in the cache in various TTL configurations and compare it
to the time an existent domain is kept in the cache.
Manufacturer Usage Description (MUD) is a new, whitelist-based cybersecurity framework that was recently proposed by the IETF to cope with the huge attack surface and a constantly increasing number of IoT devices connected to the Internet.
MUD allows the IoT manufacturers themselves to publish the legitimate communication patterns of their devices, making it easier for security devices to enforce this policy, filter out non-complying traffic, and block a device in case it has been compromised.
Typically, MUD includes a set of legitimate endpoints, specified either by domain names or by IP addresses, along with the legitimate port numbers and protocols. While these descriptions are adequate when IoT devices connect (as clients) to servers (e.g., services in the cloud), they cannot adequately describe the cases where IoT devices act as servers to which endpoints connect [1]. These endpoints (e.g., users’ mobile devices) typically do not have fixed IP addresses, nor do they associate with a domain name. In this case, accounting for 78% of IoT devices we have surveyed, MUD degrades nowadays to allow all possible endpoints and cannot mitigate any attack. In this work, we evaluate this phenomenon and show it has a high prevalence today, thus harming dramatically the MUD framework security efficiency. We then present a solution, MUDirect, which enhances the MUD framework to deal with these cases while preserving the current MUD specification. Finally, we have implemented our solution (extending the existing osMUD implementation [2]) and showed that it enables P2P IoT devices protection while having minimal changes to the osMUD code.
Analyzing the network behavior of IoT devices, including which domains, protocols, and ports the device communicates with, is a fundamental challenge for IoT security and identification. Solutions that analyze and manage these areas must be able to learn what constitutes normal device behavior and then extract rules and features to permit only legitimate behavior or to identify the device. The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
We demonstrate that learning what is normal behavior for an IoT device is more challenging than expected. In many cases, the same IoT device, with the same firmware, can exhibit different behavior or connect to different domains with different protocols. This behavior can even change, depending on the device’s geographical location. Thus, MUD functioning and IoT identification methods may not be effective in different locations. The reasons for this vary from country requirements to weak encryption, privacy regulations, CDN-like solutions, and more.
Refine list
Publication Type
Author
Venue