Publications by Year
Distributed denial of service (DDoS) attacks, especially distributed reflection denial of service attacks (DRDoS), have increased dramatically in frequency and volume in recent years. Such attacks are possible due to the attacker’s ability to spoof the source address of IP packets. Since the early days of the internet, authenticating the IP source address has remained unresolved in the real world. Although there are many methods available to eliminate source spoofing, they are not widely used, primarily due to a lack of economic incentives.
We propose a collaborative on-demand route-based defense technique (CORB) to offer efficient DDoS mitigation as a paid-for-service, and efficiently assuage reflector attacks before they reach the reflectors and flood the victim. The technique uses scrubbing facilities located across the internet at internet service providers (ISPs) and internet exchange points (IXPs).
By transmitting a small amount of data based on border gateway protocol (BGP) information from the victim to the scrubbing facilities, we can filter out the attack without any false-positive cases. For example, the data can be sent using DOTS, a new signaling DDoS protocol that was standardized by the IETF. CORB filters the attack before it is amplified by the reflector, thereby reducing the overall cost of the attack. This provides a win-win financial situation for the victim and the scrubbing facilities that provide the service.
We demonstrate the value of CORB by simulating a Memcached DRDoS attack using real-life data. Our evaluation found that deploying CORB on scrubbing facilities at approximately 40 autonomous systems blocks 90% of the attack and can reduce the mitigation cost by 85%.
Analyzing the network behavior of IoT devices, including which domains, protocols, and ports the device communicates with, is a fundamental challenge for IoT security and identification. Solutions that analyze and manage these areas must be able to learn what constitutes normal device behavior and then extract rules and features to permit only legitimate behavior or identify the device. The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
We demonstrate that learning what is normal behavior for an IoT device is more challenging than expected. In many cases, the same IoT device, with the same firmware, can exhibit different behavior or connect to different domains with different protocols, depending on the device’s geographical location.
Then, we present a technique to generalize MUD files. By processing MUD files that originate in different locations, we can generalize and create a comprehensive MUD file that is applicable for all locations.
To conduct the research, we created MUDIS, a MUD Inspection System tool, that compares and generalizes MUD files. Our open-source MUDIS tool and dataset are available online to researchers and IoT manufacturers, allowing anyone to visualize, compare, and generalize MUD files.
The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
This demo introduces MUDIS, a MUD Inspection System that inspects the network behavior of devices, based on their formal description in the MUD file. We present several use-cases in which MUDIS is useful, including examining the impact of device location, the impact of a firmware update, the correlation of network behavior between different devices of the same manufacture, and more.
MUDIS inspects two MUD files, clusters together and graph- ically visualizes identical, similar, and dissimilar rules. It then calculates a similarity score that measures the similarity between them both. It also generalizes the two MUD files where possible, such that the resulting generalized MUD covers all the permitted (white-list) network behavior for both MUDs.
Our open-source MUDIS tool and proof-of-concept dataset are available for researchers and IoT manufacturers, allowing anyone to gain meaningful insights over the network behavior of IoT devices.
Monitoring medical data, e.g., Electrocardiogram (ECG) signals, is a common application of Internet of Things (IoT) devices. Compression methods are often applied on the massive amounts of sensor data generated prior to sending it to the Cloud to reduce the storage and delivery costs. A lossy compression provides high compression gain (CG), but may reduce the performance of an ECG application (downstream task) due to information loss. Previous works on ECG monitoring focus either on optimizing the signal reconstruction or the task’s performance. Instead, we advocate a self-adapting lossy compression solution that allows configuring a desired performance level on the downstream tasks while maintaining an optimized CG that reduces Cloud costs.
We propose Dynamic-Deep, a task-aware compression geared for IoT-Cloud architectures. Our compressor is trained to optimize the CG while maintaining the performance requirement of the downstream tasks chosen out of a wide range. In deployment, the IoT edge device adapts the compression and sends an optimized representation for each data segment, accounting for the downstream task’s desired performance without relying on feedback from the Cloud. We conduct an extensive evaluation of our approach on common ECG datasets using two popular ECG applications, which includes heart rate (HR) arrhythmia classification. We demonstrate that Dynamic-Deep can be configured to improve HR classification F1-score in a wide range of requirements. One of which is tuned to improve the F1-score by 3 and increases CG by up to 83% compared to the previous state of-the-art (autoencoder-based) compressor. Analyzing DynamicDeep on the Google Cloud Platform, we observe a 97% reduction in cloud costs compared to a no compression solution. To the best of our knowledge, Dynamic-Deep is the first end-to end system architecture proposal to focus on balancing the need for high performance of cloud-based downstream tasks and the desire to achieve optimized compression in IoT ECG monitoring settings.
Analyzing the network behavior of IoT devices, including which domains, protocols, and ports the device communicates with, is a fundamental challenge for IoT security and identification. Solutions that analyze and manage these areas must be able to learn what constitutes normal device behavior and then extract rules and features to permit only legitimate behavior or to identify the device. The Manufacturer Usage Description (MUD) is an IETF white-list protection scheme that formalizes the authorized network behavior in a MUD file; this MUD file can then be used as a type of firewall mechanism.
We demonstrate that learning what is normal behavior for an IoT device is more challenging than expected. In many cases, the same IoT device, with the same firmware, can exhibit different behavior or connect to different domains with different protocols. This behavior can even change, depending on the device’s geographical location. Thus, MUD functioning and IoT identification methods may not be effective in different locations. The reasons for this vary from country requirements to weak encryption, privacy regulations, CDN-like solutions, and more.
In recent years, we have witnessed a new kind of DDoS attack, the burst attack(Chai, 2013; Dahan, 2018), where the attacker launches periodic bursts of traffic overload on online targets. Recent work presents a new kind of Burst attack, the YoYo attack (Bremler-Barr et al., 2017) that operates against the auto-scaling mechanism of VMs in the cloud. The periodic bursts of traffic loads cause the auto-scaling mechanism to oscillate between scale-up and scale-down phases. The auto-scaling mechanism translates the flat DDoS attacks into Economic Denial of Sustainability attacks (EDoS), where the victim suffers from economic damage accrued by paying for extra resources required to process the traffic generated by the attacker. However, it was shown that YoYo attack also causes significant performance degradation since it takes time to scale-up VMs.In this research, we analyze the resilience of Kubernetes auto-scaling against YoYo attacks. As containerized cloud applications using Kubernetes gain popularity and replace VM-based architecture in recent years. We present experimental results on Google Cloud Platform, showing that even though the scale-up time of containers is much lower than VM, Kubernetes is still vulnerable to the YoYo attack since VMs are still involved. Finally, we evaluate ML models that can accurately detect YoYo attack on a Kubernetes cluster
We investigate the negative caching (caching of NXdomain
responses) behavior on nine large open DNS resolvers. We
measure the amount of time an NXDomain response is kept
in the cache in various TTL configurations and compare it
to the time an existent domain is kept in the cache.
To evaluate the expected availability of a backbone network service, the administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single component failures is often insufficient. This paper builds a stochastic model of geographically correlated link failures caused by disasters to estimate the hazards an optical backbone network may be prone to and to understand the complex correlation between possible link failures. We first consider link failures only and later extend our model also to capture node failures. With such a model, one can quickly extract essential information such as the probability of an arbitrary set of network resources to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a disaster. Furthermore, we introduce standard data structures and a unified terminology on Probabilistic Shared Risk Link Groups (PSRLGs), along with a pre-computation process, which represents the failure probability of a set of resources succinctly. In particular, we generate a quasilinear-sized data structure in polynomial time, which allows the efficient computation of the cumulative failure probability of any set of network elements. Our evaluation is based on carefully pre-processed seismic hazard data matched to real-world optical backbone network topologies.
Manufacturer Usage Description (MUD) is a new, whitelist-based cybersecurity framework that was recently proposed by the IETF to cope with the huge attack surface and a constantly increasing number of IoT devices connected to the Internet.
MUD allows the IoT manufacturers themselves to publish the legitimate communication patterns of their devices, making it easier for security devices to enforce this policy, filter out non-complying traffic, and block a device in case it has been compromised.
Typically, MUD includes a set of legitimate endpoints, specified either by domain names or by IP addresses, along with the legitimate port numbers and protocols. While these descriptions are adequate when IoT devices connect (as clients) to servers (e.g., services in the cloud), they cannot adequately describe the cases where IoT devices act as servers to which endpoints connect [1]. These endpoints (e.g., users’ mobile devices) typically do not have fixed IP addresses, nor do they associate with a domain name. In this case, accounting for 78% of IoT devices we have surveyed, MUD degrades nowadays to allow all possible endpoints and cannot mitigate any attack. In this work, we evaluate this phenomenon and show it has a high prevalence today, thus harming dramatically the MUD framework security efficiency. We then present a solution, MUDirect, which enhances the MUD framework to deal with these cases while preserving the current MUD specification. Finally, we have implemented our solution (extending the existing osMUD implementation [2]) and showed that it enables P2P IoT devices protection while having minimal changes to the osMUD code.
This demo focuses on demonstrating features of a new system to protect IoT devices in customer premises at the ISP level. The core of the system is deployed as a Virtual Network Function (VNF) within the ISP network, and is based on the Manufacturer Usage Description (MUD) framework, a white-list IoT protection scheme that has been proposed in recent years.
As MUD is designed for on-premise deployment, the system makes the necessary adaptations to enable its deployment outside the customer premise. Moreover, the system includes a mechanism to distinguish between flows of different devices at the ISP level despite the fact that most home networks (and their IoT devices) are behind a NAT and all the flows from the same home come out with the same source IP address.
Our demo follows closely a proof-of-concept that we have done with a large national level ISP, showing how our system can identify the various IoT devices that are connected to the network
and detecting any unauthorized communications.
A new scalable ISP level system architecture to secure and protect all IoT devices in a large number of homes is presented. The system is based on whitelisting, as in the Manufacturer Usage Description (MUD) framework, implemented as a VNF. Unlike common MUD suggestions that place the whitelist application at the home/enterprise network, our approach is to place the enforcement upstream at the provider network, combining an NFV (Network Function Virtualization) with router/switching filtering capabilities, e.g., ACLs. The VNF monitors many home networks simultaneously, and therefore, is a highly-scalable managed service solution that provides both the end customers and the ISP with excellent visibility and security of the IoT devices at the customer premises.
The system includes a mechanism to distinguish between flows of different devices at the ISP level despite the fact that most home networks (and their IoT devices) are behind a NAT and all the flows from the same home come out with the same source IP address. Moreover, the NFV system needs to receive only the first packet of each connection at the VNF, and rules space is proportional to the number of unique types of IoT devices rather than the number of IoT devices. The monitoring part of the solution is off the critical path and can also uniquely protect from incoming DDoS attacks.
To cope with internal traffic, that is not visible outside the customer premise and often consists of P2P communication, we suggest a hybrid approach, where we deploy a lightweight component at the CPE, whose sole purpose is to monitor P2P communication. As current MUD solution does not provide a secure solution to P2P communication, we also extend the MUD protocol to deal also with peer-to-peer communicating devices. A PoC with a large national level ISP proves that our technology works as expected.
In recent years the number of IoT devices in home networks has increased dramatically. Whenever a new device connects to the network, it must be quickly managed and secured using the relevant security mechanism or QoS policy. Thus a key challenge is to distinguish between IoT and NoT devices in a matter of minutes. Unfortunately, there is no clear indication of whether a device in a network is an IoT. In this paper, we propose different classifiers that identify a device as IoT or non-IoT, in a short time scale, and with high accuracy.
Our classifiers were constructed using machine learning techniques on a seen (training) dataset and were tested on an unseen (test) dataset. They successfully classified devices that were not in the seen dataset with accuracy above 95%. The first classifier is a logistic regression classifier based on traffic features. The second classifier is based on features we retrieve from DHCP packets. Finally, we present a unified classifier that leverages the advantages of the other two classifiers.
This paper exposes a new vulnerability and introduces a corresponding attack, the NoneXistent Name Server Attack (NXNSAttack), that disrupts and may paralyze the DNS system, making it difficult or impossible for Internet users to access websites, web e-mail, online video chats, or any other online resource. The NXNSAttack generates a storm of packets between DNS resolvers and DNS authoritative name servers. The storm is produced by the response of resolvers to unrestricted referral response messages of authoritative name servers. The attack is significantly more destructive than NXDomain attacks (e.g., the Mirai attack): i) It reaches an amplification factor of more than 1620x on the number of packets exchanged by the recursive resolver. ii) In addition to the negative cache, the attack also saturates the ‘NS’ section of the resolver caches. To mitigate the attack impact, we propose an enhancement to the recursive resolver algorithm, MaxFetch(k), that prevents unnecessary proactive fetches. We implemented the MaxFetch(1) mitigation enhancement on a BIND resolver and tested it on real-world DNS query datasets. Our results show that MaxFetch(1) degrades neither the recursive resolver throughput nor its latency. Following the discovery of the attack, a responsible disclosure procedure was carried out, and several DNS vendors and public providers have issued a CVE and patched their systems.
In this paper we present three attacks on private internal networks behind a NAT and a corresponding new
protection mechanism, Internal Network Policy, to mitigate a wide range of attacks that penetrate internal networks behind a NAT. In the attack scenario, a victim is
tricked to visit the attacker’s website, which contains a
malicious script that lets the attacker access the victim’s
internal network in different ways, including opening a
port in the NAT or sending a sophisticated request to
local devices. The first attack utilizes DNS Rebinding
in a particular way, while the other two demonstrate different methods of attacking the network, based on application security vulnerabilities. Following the attacks,
we provide a new browser security policy, Internal Network Policy (INP), which protects against these types of vulnerabilities and attacks. This policy is implemented
in the browser just like Same Origin Policy (SOP) and
prevents malicious access to internal resources by external entities.
We present a basic tool for zero day attack signature extraction. Given two large sets of messages, P the messages captured in the network at peacetime (i.e., mostly legitimate traffic) and A the messages captured during attack time (i.e., contains many attack messages), we present a tool for extracting a set S of strings that are frequently found in A and not in P , thus allowing the identification of the attack packets. This is an important tool in protecting sites on the Internet from worm attacks and distributed denial of service attacks and may also be useful for other problems, including command and control identification and the DNA-sequences analysis. The main contributions of this paper are the system we developed to extract the required signatures together with the string-heavy hitters problem definition and the algorithm for solving this problem. This algorithm finds popular strings of variable length in a set of messages, using, in a tricky way, the classic heavy-hitter algorithm as a building block. The algorithm runs in linear time requiring one-pass over the input. Our system makes use of this algorithm to extract the desired signatures. Furthermore, we provide an extended algorithm which is able to identify groups of signatures, often found together in the same packets, which further improves the quality of signatures generated by our system. Using our system, a yet unknown attack can be detected and stopped within minutes from attack start time.
Refine list
Publication Type
Author
Venue