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Abstract

A recursive and fast construction of an n-element priority queue from exponentially smaller hard-
ware priority queues and size n RAM is presented. All priority queue implementations to date
require either O(log n) instructions per operation or, exponential (with key size) space or, expen-
sive special hardware whose cost and latency dramatically increases with the priority queue size.
Hence constructing a priority queue (PQ) from considerably smaller hardware priority queues
(which are also much faster) while maintaining the O(1) steps per PQ operation is critical. Here
we present such an acceleration technique called the Power Priority Queue (PPQ) technique.
Specifically, an n-element PPQ is constructed from 2k − 1 primitive priority queues of size k

√
n

(k = 2, 3, ...) and a RAM of size n, where the throughput of the construct beats that of a single,
size n primitive hardware priority queue. For example an n-element PQ can be constructed from
either three

√
n or five 3

√
n primitive H/W priority queues.

Applying our technique to a TCAM based priority queue, results in TCAM-PPQ, a scalable
perfect line rate fair queuing of millions of concurrent connections at speeds of 100 Gbps. This
demonstrates the benefits of our scheme; when used with hardware TCAM. We expect similar
results with systolic arrays, shift-registers and similar technologies.

As a byproduct of our technique we present an O(n) time sorting algorithm in a system
equipped with a O(w

√
n) entries TCAM, where here n is the number of items, and w is the

maximum number of bits required to represent an item, improving on a previous result that used
an Ω(n) entries TCAM. Finally, we provide a lower bound on the time complexity of sorting
n-element with TCAM of size O(n) that matches our TCAM based sorting algorithm.

1. Introduction

A priority queue (PQ) is a data structure in which each element has a priority and a dequeue
operation removes and returns the highest priority element in the queue. PQs are the most basic
component for scheduling, mostly used in routers, event driven simulators and is also useful in
shortest path and navigation (e.g. Dijkstra’s algorithm) and compression (Huffman coding). In5
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time based scheduling systems, time values, such as customer arrival time or, expected end of
service time, are transformed into priorities that are then used in the PQ [2, 3].

As noted first by Kleinrock, packet scheduling schemes are at the foundations of the suc-
cessful construction of computer networks [4, 2, 5]. In today’s routers and switches, PQs play
a critical role in scheduling and deciding the transmission order of packets [6, 7, 8]. Priority10

Queues are used to enforce fairness while also considering the different priorities of flows, thus
guaranteeing that flows get a weighted (by their relative importance and history of usage) fair
share of the bandwidth independent of the size of packets used.

Since PQs share the same time bounds as sorting algorithms[9], in high throughput scenarios,
(e.g., backbone routers) special hardware PQs are used. Hardware PQs are usually implemented15

by ASIC chips that are specially tailored and optimized to the scenario and do not scale well
[10, 11, 12, 13, 14, 15].

We present a new construction for large hardware PQs, called Power Priority Queue (PPQ),
which recursively uses small hardware priority queues in parallel as building blocks to construct
a much larger one. The size of the resulting PQ is a power of the smaller PQs size, specifically20

we show that an n elements priority queue can be constructed from only 2k − 1 copies of any
base (hardware) k

√
n elements (size) priority queue. Our construction benefits from the optimized

performance of small hardware PQs and extends these benefits to high performance, large size
PQ.

We demonstrate the applicability of our construction in the case of the Ternary Content Ad-25

dressable Memory (TCAM) based PQ, that was implied by Panigrahy and Sharma[16]. The
TCAM based PQ, as we investigate and optimize in Appendix E , has poor scalability and be-
comes impractical when it is required to hold 1M items. But by applying our construction with
relatively tiny TCAM based PQ, we achieve a PQ of size 1M with throughput of more than 100M
operations per second, which can be used to schedule packets at a line rate of 100Gb/s. The con-30

struction uses in parallel 10 TCAMs (or TCAM blocks) of size 110Kb and each PQ operation
requires 3.5 sequential TCAM accesses (3 for Dequeue and 4 for Insert).

Finally this work also improves the space and time performance of the TCAM based sorting
scheme presented in [16]. As we show in Section 4 an n elements sorting algorithm is con-
structed from two w

√
n entries TCAM’s, where w is the number of bits required to represent one35

element (in [16] two n entries TCAM’s are used). The time complexity to sort n elements in our
solution is the same as in [16], O(n), when counting TCAM accesses, however our algorithm
accesses much smaller TCAM’s and thus is expected to be faster. Moreover, in Section 4.2 we
prove a lower bound on the time complexity of sorting n elements with a TCAM of size n (or
√

n) that matches our TCAM based sorting algorithm.40

2. Priority Queues Background

2.1. Priority queues and routing
Since the beginning of computer networks, designing packet scheduling schemes has been

one of the main difficulties [5, 2]. In today’s routers and switches, PQs play a critical role in
scheduling and deciding the order by which packets are forwarded [6, 7, 8]. Priority Queues is45

the main tool with which the schedulers implement and enforce fairness combined with priority
among the different flows. Guaranteeing that flows get a weighted (by their relative importance)
fair share of the bandwidth independent of packet sizes they use.

For example, in the popular Weighted Fair Queueing (WFQ) scheduler, each flow is given
a different queue, ensuring that one flow does not overrun another. Then, different weights are50
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associated with the different flows indicating their levels of quality of service and bandwidth
allocation. These weights are then used by the WFQ scheduler to assign a time-stamp to each
arriving packet indicating its virtual finish time according to emulated Generalized Processor
Sharing (GPS). And now comes the critical and challenging task of the priority queue, to transmit
the packets in the order of the lowest timestamp packet first, i.e., according to their assigned55

timestamps2. For example, in a 100Gbps line rate, hundreds of thousands of concurrent flows
are expected3. Thus the priority queue is required to concurrently hold more than million items
and to support more than 100 million insert or dequeue operations per second. Note that the
range of the timestamps depends on the router’s buffer size and the accuracy of the scheduling
system. For best accuracy, the timestamps should at least represent any offset in the router’s60

buffer. Buffer size is usually set proportional to RTT · lineRate, and for a 100Gbps line rate and
RTT of 250ms, timestamp size can get as high as 35 bits.

No satisfactory software PQ implementation exists due to the inherent O(log n) step com-
plexity per operation in linear space solutions, or alternatively O(w) complexity but then with
O(2w) space requirement, where n is the number of keys (packets) in the queue and w is the size65

of the keys (i.e., timestamps in the example above). These implementations are mostly based on
binary heaps or Van De Boas Trees[12]. None of these solutions is scalable, nor can it handle
large priority queues with reasonable performances.

Networking equipment designers have therefore turned to two alternatives in the construction
of efficient high rate and high volume PQ’s, either to implement approximate solutions, or to70

build complex hardware priority queues. The approximation approach has light implementation
and does not require a PQ [18]. However the inaccuracy of the scheduler hampers its fairness,
and is thus not applicable in many scenarios. The hardware approaches, described in detail in the
next subsection, are on the other hand not scalable.

2.2. Hardware priority queue implementations75

Here we briefly review three hardware PQ implementations, Pipelined heaps [13, 19], Sys-
tolic Arrays [10, 11] and Shift Registers [15]. ASIC implementations, based on pipelined heaps,
can reach O(1) amortized time per operation and O(2w) space [13, 19], using pipeline depth that
depends on w, the key size, or log n the number of elements. Due to the strong dependence on
hardware design and key size, most of the ASIC implementations use small key size, and are not80

scalable for high rate. In [20] a more efficient pipelined heap construction is presented, and our
technique resembles some of the principals used in their work, however their result is a complex
hardware implementation requiring many hardware processors or special elements and is very
specific to pipelined heaps and of particular size, while the technique presented here is general,
scalable with future technologies and works also with simpler hardware such as the TCAM.85

Other hardware implementations are Systolic Arrays and Shift Registers . They are both
based on an array of O(n) comparators and storing units, where low priority items are gradually
pushed to the back and highest priority are kept in front allowing to extract the highest priority
item in O(1) step complexity. In shift register based implementations new inputs are broadcasted
to all units where as in systolic arrays the effect of an operation (an inserted item, or values shift)90

propagates from the front to the back one step in each cycle. Shift Registers require a global
communication board that connects with all units while systolic arrays require bigger units to

2Note that it’s enough to store the timestamp of the first packet per flow.
3Estimated by extrapolating the results in [17] to the current common rate.
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hold and process propagated operations. Since both of them requires O(n) special hardware such
as comparators, making them cost effective or even feasible only for low n values and therefore
again not scalable.95

Another forth approach, which is mostly theoretical is that of Parallel Priority Queues. It
consists of a pipeline or tree of processors [21], each merges the ordered list of items produced
by its predecessor processor(s). The number of processors required is either O(n) in a simple
pipeline or O(log n) in a tree of processors, where n is the maximal number of items in the
queue. The implementations of these algorithms [22] is either expensive in case of multi-core100

based architectures or unscalable in the case of ASIC boards.

3. PPQ - The Power Approach

The first and starting point idea in our Power Priority Queue (PPQ) construction is that to
sort n elements one can partition them into

√
n lists of size

√
n each, sort each list, and merge

the lists into one sorted list. Since a sorted list and a PQ are essentially the same, we use one
√

n105

elements PQ to sort each of the sublists (one at a time), and a second
√

n elements PQ in order
to merge the sublists. Any

√
n elements (hardware) PQ may be used for that. In describing the

construction we call each PQ that serves as a building block, Base Priority Queue (BPQ). This
naive construction needs two

√
n elements BPQ’s to construct an n element PPQ.

The BPQ building block expected API is as follows:110

• Insert(item) - inserts an item with priority item.key.
• Delete(item) - removes an item from the BPQ, item may include a pointer inside the queue.
• Dequeue() - removes and returns the item with the highest priority (minimum key).
• Min() - like a peek, returns the BPQ item with the minimum key.

Note that the Min operation can easily be constructed by caching the highest priority item after115

every Insert and Dequeue operation, introducing an overhead of a small and fixed number of
RAM accesses.

In addition our construction uses a simple in memory (RAM) FIFO queue, called RList,
implemented by a linked list that supports the following operations:

• Push(item) - inserts an item at the tail of the RList.120

• Pop() - removes and returns the item at the head of the RList.

Notice that an RList FIFO queue, due to its sequential data access, can be mostly kept in
DRAM while supporting SDRAM like access speed (more than 100Gb/s). This is achieved by
using SRAM based buffers for the head and tail parts of each list, and storing internal items in
several interleaved DRAM banks [23].125

3.1. Power Priority Queue

To construct a PPQ (see Figures 1 and 2) we use one BPQ object, called input-BPQ, as an
input sorter. It accepts new items as they are inserted into the PPQ and builds

√
n long lists out

of them. When a new
√

n list is complete it is copied to the merging area and the input BPQ
starts constructing a new list. A second BPQ object, called exit-BPQ, is used to merge and find130

the minimum item among the lists in the merge area. The pseudo-code is given in Appendix
A. The minimum element from each list in the merge area is kept in the exit-BPQ. When the
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}

}

RAMbuffer

input-BPQs

exit-BPQ

min

Figure 1: The basic (and high level) Power Priority Queue (PPQ) construction. Note that the length of sublists in the
RAM may reach 2

√
n (after merging).

minimum element in the exit-BPQ is dequeued as part of a PPQ dequeue, a new element from
the corresponding list in the merging area is inserted into the exit-BPQ object. Except for
the minimum of each RList sorted list the elements in the merging area are kept in a RAM135

(see notice at the end of the previous subsection). Each PPQ Dequeue operation extracts the
minimum element from the exit-BPQ (line 37) or the input-BPQ (line 46), depending on which
one contains the smallest key.

The above description suffers from two inherent problems (bugs); first, the construction may
end up with more than

√
n small RLists in the merging area which in turn would require an140

exit-BPQ of size larger than
√

n, and second, how to move
√

n sorted elements from a full
input-BPQ to an RList while maintaining an O(1) worst case time per operation. In the next
subsections we explain how to overcome these difficulties (the pseudo-code of the full algorithm
is given in Appendix A).

3.1.1. Ensuring at most
√

n RLists in the RAM145

As items are dequeued from the PPQ, RAM lists become shorter, but the number of RAM
lists might not decrease and we could end up with more than

√
n RLists, many of which with less

than
√

n items. This would cause the exit-BPQ to become full, even though the total number of
items in the PPQ is less than n. To overcome this, any time a new list is ready (when the input-
BPQ is full) we find another RAM list of size at most

√
n (which already has a representative in150

the exit-BPQ) and we start a process of merging these two lists into one RList in the RAM (line
22 in the pseudo-code) keeping their mutual minimum in the exit-BPQ (lines 25-28), see Figure
2(c). In case their mutual minimum is not the currently stored item in the exit-BPQ, the stored
item should be replaced using exit-BPQ.Delete operation, followed by an Insert of the mutual
minimum.155

This RAM merging process is run in the background interleaving with the usual operation
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of the PPQ. In every PPQ.Insert or PPQ.Dequeue operation we make two steps in this merging
(line 13), extending the resulting merged list (called fused-sublist in the code) by two more
items. Considering the fact that it takes at least

√
n insertions to create a new RAM sublist,

we are guaranteed that at least 2
√

n merge steps complete between two consecutive RAM lists160

creations, ensuring that the two RAM lists are merged before a new list is ready. Note that since
the heads of two merged lists and the tail of the resulting list are buffered in SRAM the two
merging steps have small, if any at all, influence on the overall completion time of the operation.

If no RAM list smaller than
√

n exists then either there is free space for the new RAM list and
there is no need for a merge, or the exit-BPQis full, managing

√
n RAM lists of size larger than165

√
n, i.e., the PPQ is overfull. If however such a smaller than

√
n RLists exists we can find one

such list in O(1) time by holding a length counter for each RList, and managing an unordered set
of small RLists (those with length at most

√
n). This set can easily be managed as a linked list

with O(1) steps per operation.

Figure 2: A sequence of operations, Insert(8), Insert(2), and Insert(23), and the Power Priority Queue (PPQ) state after
each ((b)-(d)). Here n = 9 and the Merge in state (c) is performed since there is a sublist whose size is at most

√
n.

3.1.2. Moving a full input-BPQ into an RList in the RAM in O(1) steps170

When the input-BPQ is full we need to access the
√

n sorted items in it and move them into
the RAM (either move or merge with another RList as explained above). At the same time we
also need to use the input-BPQ to sort new incoming items. Since the PPQ is designed for real
time scheduling systems, we should carry out these operations while maintaining O(1) worst
case steps per insert or dequeue operations. As the BPQ implementation might not support an175

operation “copy all items and reset” in one step, the items should be deleted (using dequeue) and
copied to the RAM one by one. Such an operation consumes too much time (

√
n) to be allowed

during a single Insert operation. Therefore, our solution is to use two input-BPQs with flipping
roles, while we insert a new item to the first we evacuate one from the second into an RList in the
RAM. Since their size is the same, by the time we fill the first we have emptied the second and180

we can switch between them. Thus our construction uses a total of three BPQ objects, rather than
two. Note that when removing the highest-priority element, we have to consider the minimums
of the queues and the list we fill, i.e., one input-BPQ, one RList and the exit-BPQ.

The pseudo-code of the full algorithm is provided in Appendix A. The two input-BPQs
are called input-BPQ[0] and input-BPQ[1], where input-BPQ[in] is the one currently used for185

insertion of new incoming items and input-BPQ[out] is evacuated in the background into an
RList named buffer[out]. The RList accessed by buffer[in] is the one being merged with another
small sublist already in the exit-BPQ.
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3.2. PPQ Complexity Analysis

Here we show that each PPQ.Insert operation requires at most 3 accesses to BPQ objects,190

which can be performed in parallel, thus adding one sequential access time, and each PPQ.dequeue
operation requires at most 2 sequential accesses to BPQ objects.

The most expensive PPQ operation is an insert in which exactly the input-BPQ[in] becomes
full. In such an operation the following 4 accesses (A1-A4) may be required; A1: An insert
on input-BPQ[in], A2: a Delete and A3: Insert in the exit-BPQ, and A4: A dequeue from the195

input-BPQ[out]. Accesses A2& A3 are in the case that the head item in the new list that starts
its merge with an RList needs to replace an item in the exit-BPQ. However, notice that accesses
A1, A2 and A4 may be executed in parallel, and only access A3 sequentially follows access A2.
Thus the total sequential time of this PPQ.Insert is 2. Since such a costly PPQ.Insert happens
only once every

√
n Insert operations, we show in Appendix B how to delay access A3 to a200

subsequent PPQ.Insert thus reducing the worst case sequential access time of PPQ.Insert to 1.
The PPQ.Dequeue operation performs in the worst case a Dequeue followed by an Insert to

the exit-BPQ and in the background merging process, a Dequeue in one input-BPQ. Therefore
the PPQ Dequeue operation requires in the worst case 3 accesses to the BPQ objects which can
be performed in two sequential steps.205

Both operations can be performed with no more than 7 RAM accesses per operation (which
can be made to the SRAM whose size can be about 8MB), and by using parallel RAM accesses,
can be completed within 6 sequential RAM accesses. Thus, since each packet is being inserted
and dequeued from the PPQ the total number of sequential BPQ accesses per packet is 3 with 6
sequential SRAM accesses. This can be farther improved by considering that the BPQ accesses210

of the PPQ.Insert are to a different base hardware object than those of the PPQ.Dequeue. In a
balanced Insert-Dequeue access pattern, when both are performed concurrently, this reduces to
2 the number of sequential accesses to BPQ objects per packet.

3.3. The TCAM based Power Priority Queue (TCAM-PPQ)

The powering technique can be applied to several different hardware PQ implementations,215

such as, Pipelined heaps [13, 19], Systolic Arrays [10, 11] and Shift Registers [15]. Here we use
a TCAM based PQ building block, called TCAM Ranges based PQ (RPQ), to construct a TCAM
based Power Priority Queue called TCAM-PPQ, see Figure 3. The RPQ construction is described
in Appendix D, it is an extension of the TCAM based set of ranges data structure of Panigrhay
and Sharma[16] and features a constant number of TCAM accesses per RPQ operation using two220

w · m entries TCAMs (each entry of w bits) to handle m elements. Thus a straightforward naive
construction of an n items TCAM-PPQ requires 6 TCAM’s of size w

√
n entries.

Let us examine this implementation in more detail. According to the RPQ construction in Ap-
pendix D (also summarized in Table D.2) 1 sequential access to TCAMs is required in the imple-
mentation of RPQ.Insert, 1 in the implementation of RPQ.Dequeue and 3 for RPQ.delete(item).225

Combining these costs with the analysis in the previous subsection yields that the worst case
cost of TCAM-PPQ.Insert is 3 sequential accesses to TCAMs, and also 3 for TCAM-PPQ. De-
queue. However, TCAM-PPQ.Insert costs 3 only once every

√
n inserts, i.e., its amortized cost

converges to 2, and the average of the two operations together is thus 2.5 sequential TCAM
accesses. Note that it is possible to handle priorities’ (values of the PQ) wrap around by a simple230

technique as described in Appendix E.3.
Consider for example the following use case of the TCAM-PPQ. It can handle a million keys

in a range of size 235 (reasonable 100 Gbps rate [24]) using 6 TCAMs, each smaller than 1 Mb.
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Considering a TCAM rate of 500 millions accesses per second (reasonable rate for 1 Mb TCAM
[25]), and 2.5 accesses per operation (Insert or Dequeue) this TCAM-PPQ works at a rate of235

100 million packets per second. Assuming average packet size of 140 bytes [13, 26], then the
TCAM-PPQ supports a line rate of 112 Gbps.

TCAMs
KeysRanges

SRAM

Input-BQP

Exit-BQP

Sorted
Sub-lists

Ranges

TCAMs

}
}}

min

highest priority 
(minimal key)

input

Figure 3: The TCAM based Priority Queue (TCAM-PPQ) construction.

3.4. The Power k Priority Queue - PPQ(k)

The PPQ scheme describes how to build an n-element priority queue from three
√

n elements
priority queues. Naturally this calls for a recursive construction where the building blocks are240

built from smaller building blocks. Here we implement this idea in the following way; (see
Figure 5) we fix the size of the exit-BPQ to be x, the size of the smallest building block. In
the RAM area x lists each of size n/x are maintained. The input-BPQ is however constructed
recursively. In general if the recursion is applied k times, a PPQ with capacity n is constructed
from ·2k BPQs each of size k

√
n.245

However, a closer look at the BPQ’s used in each step of the recursion reveals that each step
requires only 2 size x exit-BPQ and each pair of input-BPQs is replaced by a pair of input-BPQs
whose size is x times smaller as illustrated in Figure 4. Thus each step of the recursion adds
only 2 size x BPQ’s objects (the exit-BPQs) and the corresponding RAM space (see Figure 4).
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Figure 4: A scenario in which four n/x2 input-BPQs construct two size n/x input-BPQs that in turn are used in the
construction of one size n input-BPQ. As explained in the text it illustrates that only 2 n/x2 input-BPQs are required at
any point of time.

At the last level 2 size x input-BPQs are still required. Consider the top level of the recursion250

as illustrated in Figure 4, where a size n PPQ is constructed from two input-BPQs, Q0 and Q1
each of size n/x and each with size n/x RAM (the RAM and the exit-BPQs are not shown in the
figure at any level). Each of Q0 and Q1 is in turn constructed from two size n/x2 input-BPQs
(Q0,0, Q0,1, Q1,0, and Q1,1) and the corresponding RAM area and size x exit-BPQ. As can be
seen, at any point of time only two n/x2 input-BPQs are in use. For example moving from state255

(b) to state (c) in Figure 4, Q0,0 is already empty when we just switch from inputting into Q0 to
inputting to Q1, and Q1 needs only Q1,0 for n/x2 steps. When Q1 starts using Q1,1, moving from
(c) to (d), Q0,1 is already empty, etc. Recursively, these two size n/x2 input-BPQs may thus be
constructed by two n/x3 input-BPQs. Moreover notice that since only two input-BPQs are used
at each level, also only two exit-BPQs are required at each level. The construction recurses k260

times until the size of the input-BPQ equals x, which can be achieved by selecting x = k
√

n. Thus
the whole construction requires 2k − 1, size k

√
n BPQs. In our construction in Section 3.4.1 we

found that k = 3 gives the best performance for a TCAM based PQ with 100GHz line rate.
We represent the time complexity of an operation OP ∈ {ins, deq} on a size n PPQ(k) built

from base BPQs of size x = k
√

n, T (OP, n, x), by a three dimensional vector (Nins,Ndeq,Ndel)265

that represents the number of BPQ Insert, the number of BPQ Dequeue and the number of BPQ
Delete operations (respectively) required to complete OP in the worst case. BPQ operations, for
for moderate size BPQ, are expected to dominate other CPU and RAM operations involved in
the algorithm. In what follows we show that the amortized cost of an Insert operation is (1,1,1/x)
(i.e., all together at most 3 sequential BPQ operations), and (1,1,0) for a Dequeue operation.270

If we omit the Background routine, each PPQ(k) Dequeue operation either performs a De-
queue from input-BPQ[in] (a PPQ (k − 1) of size n/x), extract an item from the exit-BPQ (using
one BPQ Dequeue and one Insert operations) or fetch it from a buffer[out] (no BPQ operation).

9



Therefore we can express the time complexity of PPQ(k) Dequeue operations (without Back-
ground), t(deq, n, x) or in shorter form tdeq(n), by the following recursive function:

tdeq(n) =


(0, 0, 0) min. is in buffer[out]
(1, 1, 0) min. is in exit-BPQ

tdeq(n/x) otherwise
. (1)

Considering the fact that a priority queue of capacity x is the BPQ itself, tdeq(x) = t(deq, x, x) =

(0, 1, 0). Therefore the worst case time for any Dequeue is (1, 1, 0), i.e. t(deq, n, x) = (1, 1, 0)
when n > x.

Note that the equation t(deq, n, x) = (1, 1, 0) expresses the fact that Dequeue essentially
updates at most one BPQ (holding the minimum item), which neglects the RAM and CPU275

operations required to find that BPQ within the O(k) possible BPQs and buffers. Neglecting these
operations is reasonable when k is small, or when we use additional BPQ-like data structure of
size O(k) that holds the minimums of all input-BPQ[in] and buffers and can provide their global
minimum in O(1) time.

The Background() routine, called at the end of the Dequeue operation, recursively performs
a Dequeue from all input-BPQ[out]s. Since there are k − 1 input-BPQ[out]s, the Background()’s
time cost, B(n, x), equals (k−1, k−1, 0). Therefore the total time complexity of PPQ(k) Dequeue
(by definition T (deq, n, x) = t(deq, n, x) + B(n, x)) equals k BPQ Dequeues and k BPQ Inserts in
the worst case, i.e.

T (deq, n, x) = (k, k, 0). (2)

If we omit the Background routine, each PPQ(k) Insert operation performs an Insert to one
of its two n/x-sub-queues (the input-BPQ[in]) and sometimes (when the input-BPQ[in] is full)
also starting merging of a new RList with existing one which might require a Delete and Insert to
the exit-BPQ. Therefore we can express the time complexity of PPQ(k) Insert operation (without
Background), t(ins, n, x) or in shorter form tins(n), by the following recursive function:

tins(n) =

{
tins(n/x) + (1, 0, 1) input-BPQ[in] is full

tins(n/x) otherwise . (3)

Considering the fact that a priority queue of capacity x is the BPQ itself, tins(x) = t(ins, x, x) =

(1, 0, 0). Therefore the worst case time of any Insert is (k, 0, k − 1), i.e. t(ins, n, x) = (k, 0, k − 1)
when n > x. When we include the cost of the Background, we get that

T (ins, n, x) = (2k − 1, k − 1, k − 1). (4)

Moreover, since the probability that at least one input-BPQ[in] is full is approximately 1/x, the280

amortized cost of a PPQ(k) Insert without Background is (1, 0, 0) + 1
x (1, 0, 1), and with back-

ground it is (k, k − 1, 0) + 1
x (1, 0, 1).

An important property of the Background() routine is that it only accesses input-BPQ[out]s
while the rest of the operations of Insert and Dequeue access input-BPQ[in]s, therefore it can
be executed in parallel with them. Moreover, since Background performs a Dequeue on input-285

BPQ[out]s, and since in input-BPQ[out] minimum key can be found locally (no input-BPQ[in]
is used by input-BPQ[out]), all Dequeue calls belonging to a Background can be performed
concurrently, thereby achieving parallel time cost of (1,1,0) for the Background routine. As
a consequence, putting it all together, in a fully parallel implementation the amortized cost of
Insert is (1, 1, 1/x) and (1, 1, 0) for Dequeue.290
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}

}

RAMbuffer

exit-BPQ

RAMbuffer

exit-BPQ

input-BPQs
RAMbuffer

exit-BPQ

}
}

}

}

min min min min

Figure 5: High level diagram of the Power k = 3 Priority Queue - PPQ(3) construction.

3.4.1. The generalized TCAM-PPQ(k)
When applying the PPQ(k) scheme with the RPQ (Ranges based Priority Queue), we achieve

a priority queue with capacity n which uses O(wk k
√

n) entries TCAM (each entry of size w bits)
and O(k) TCAM accesses per operation. More precisely, using the general analysis of PPQ(k)
above and the RPQ analysis summarized in D.2, TCAM-PPQ(k) requires 2k − 1 RPQs of size295

k
√

n each and achieves Insert with amortized cost of 3k − 1 TCAM accesses and Dequeue with
3k TCAM accesses. As noted above these results can be farther improved, by using parallel
execution of independent RPQ operations, which when fully applied can results in this case with
only 3 TCAM accesses.

Since access time, cost and power consumption of TCAMs decreases as the TCAM gets300

smaller, the TCAM-PPQ(k) scheme can be used to achieve an optimized result based on the goals
of the circuit designer. Note that large TCAMs also suffer from long sequential operation latency
which leads to pipeline based TCAM usage. The reduction of TCAM size with TCAM-PPQ(k)
allows a simpler and straightforward TCAM usage. Considering the TCAM size to performance
tradeoffs the best TCAM based PQ is the TCAM-PPQ (3) whose performance exceeds RPQ and305

simple TCAM based lists implementations.
Let T (S ) be the access time of a size S TCAM, then another interesting observation is

that for any number of items n, the time complexity of each operation on TCAM-PPQ(k) is
O

(
k · T (θ k

√
n)

)
, where θ is either w or w2 depending on whether the TCAM returns the longest

prefix match or not, respectively. This time complexity can be also expressed by O
(
log n · T (S )

log S−log θ

)
.310

This implies that faster scheduling can be achieved by using TCAMs with lower T (S ) to (log S −
log θ) ratio, suggesting a design objective for future TCAMs.

The new TCAM-PPQ(3) can handle a million keys in a range of size 235 (reasonable 100
Gbps rate) using 10 TCAMs (5 BPQs) each smaller than 110 Kb with access time 1.1 ns. A
TCAM of this size has a rate of 900 millions accesses per second, and 3.5 accesses per opera-315
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tion (Insert or Dequeue) this TCAM-PPQ(3) works at a rate of 180 million packets per second
(assuming some parallelism between Insert and Dequeue operations steps). Assuming average
packet size of 140 bytes [13, 26], TCAM-PPQ(3) supports a line rate of 200 Gbps.

4. Power Sorting

We present the PowerSort algorithm (code is given in Appendix C), that sorts n items in O(n)320

time using one BPQ with capacity
√

n. In order to sort n items, PowerSort considers the n items
input as

√
n sublists of size

√
n each, and using the BPQ to sort each one of them apart (lines 3-

13). Each sorted sublist is stored in a RList (see Section 3). Later on the
√

n sublists are merged
to one sorted list of n items (by calling PowerMerge on line 14). We use PowerMerges,t to refer
to the function responsible for the merging phase, this function merges a total of t keys divided325

to s ordered sublists using a BPQ with capacity s. The same BPQ previously used for sorting is
used in the merge phase for managing the minimal unmerged keys one from each sublist, we call
such keys local minimum of their sublists.

The merge phase starts by initialization of the BPQ with the smallest keys of the sublists
(lines 17-20). From now on until all keys have been merged, we extract the smallest key in the330

list (line 23), put it in the output array, deletes it from the BPQ and insert a new one, taken from
the corresponding sublist which the extracted key originally came from (line 27), i.e. this new
key is the new local minimum in the sublist of the extracted key.

When running this algorithm with a RPQ, we can sort n items in O(n) time requiring only
O(w ·

√
n) TCAM entries. As can be seen from Section 4.2 these results are in some sense335

optimal.

4.1. The Power k Sorting

The PPQ(k) scheme can also be applied for the sorting problem. An immediate reduction
is to insert all items to the queue and then dequeuing them one by one according to the sorted
order. A more space efficient scheme can be obtained by using only one BPQ with capacity k

√
n340

for all the functionalities of the O(k) BPQs in the previous method. We use k phases, each
phase 0 ≤ i < k, starts with n

k−i
k sorted sublists each contains n

i
k items, and during the phase the

BPQ is used to merge each k
√

n of the sublists resulting with n
k−i−1

k sorted sublists each with n
i+1
k .

Therefore the last phase completes with one sorted list of n items.
This sorting scheme inserts and deletes each item k times from the BPQ (one time in every345

phase), therefore the time complexity remains O(kn), but it uses only one BPQ. When using this
method with TCAM based BPQ, this method will sort n items in O(kn) TCAM accesses using
O(kw k

√
n) TCAM space (in term of entries). This result matches the lower bound when a longest

prefix TCAM is used, omitting the w factor in space and considering r = 1
k (see 4.2), thereby

expressing its optimality. Similar to the TPQ(k) priority queue implementation, this sorting350

scheme presents an interesting time and TCAM space tradeoffs that can have big importance to
TCAMs and scheduling systems designers.

4.2. Proving Ω(n) queries lower bound for TCAM sorting

Here we generalize Ben Amram’s [27] lower bound and extend it to the TCAM assisted
model. We consider a TCAM of size M as a black box, with a query(v) - an operation that355

searches v in the TCAM resulting with one out of M possible outcomes, and a write(p, i) - an
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operation that writes the pattern value p to the entry 0 ≤ i < M in the TCAM but has no effect
on the RAM.

Following [27], we use the same representation of a program as a tree in which each node
is labeled with an instruction of the program. Instructions can be assignment, computation,360

indirect-addressing , decision and halt where we consider TCAM query as M outputs decision
instruction and omit TCAM writes from the model. The proof of the next lemma is the same as
in [27].

Lemma 4.1. In the extended model, for any tree representation of a sorting program of n ele-
ments, the number of leafs is at least n!.365

Definition 4.2. An M,q-Almost-Binary-Tree (ABTreeM,q) is a tree where the path from any leaf
to the root contains at most q nodes with M sons each, the rest of the nodes along the path are
binary (have only two sons).

Lemma 4.3. The maximal height of any ABTreeM,q with N leafs is at least blog2 Nc−qdlog2 Me.

Proof. we simply replace each M-node with a balanced binary tree of M leafs 4. Each substi-
tution adds at most dlog2 Me − 1 nodes across all the paths from the root to any predecessor of
the replaced M-node. In the resulting tree T ′, the maximal hight H′ is at least log2 N. By the
definition of q, at most q · (dlog Me − 1) nodes along the maximal path in T ′ are the result of
nodes replacements. Therefore the maximal height H of the original tree T (before replacement)
must satisfy:

H ≥ H′ − qdlog Me ≥
n
2

log n − qdlog Me, (5)

370

Theorem 4.4. Any sorting algorithm that uses standard operators, polynomial size RAM and M
size TCAMs, must use at least n

2 log n − q log M steps (in the worst case) to complete where q is
the maximum number of TCAM queries per execution and n is the number of sorted items.

Proof. Let T be the computation tree of the sorting algorithm as defined in [27], considering
TCAM queries as M-nodes. A simple observation is that T is an ABTreeM,q with at least n!375

leafs. Therefore by Lemma 4.3 the maximal height of the tree is at least blog2 n!c − qdlog2 Me.
As log n! > n

2 log n we get that the worst case running time of the sorting algorithm is at least:
n
2 log n − q log M.

Corollary 4.5. Any o(n log n) time sorting algorithm that uses standard operators, polynomial
size RAM and O(nr) size TCAMs, must use Ω( n

r ) TCAM queries.380

Proof. From Theorem 4.4, n
2 log n − q log M = o(n log n), therefore

q = Ω

(
n log n
dlog Me

)
.

By setting M = O(nr) we obtain that

q = Ω

(n
r

)
.

4if M is not a power of 2 then the sub tree should be as balanced as possible
13



Corollary 4.6. Any o(n log n) time sorting algorithm that uses standard operators, polynomial
size RAM and O(nr) size BPQs, must use Ω( n

r ) BPQ operations.

Proof. A BPQ of size O(nr) can be implemented with TCAMs of size O(nr) when considering
TCAMs that return the most accurate matching line (the one with fewest ’*’s). Such implemen-385

tation performs O(1) TCAM accesses per operation, therefore, if there was a sorting algorithm
that can sort n items using O(nr) size BPQs with o( n

r ) BPQ operations then it was contradicting
Corollary 4.5.

Note that the model considered here matches the computation model used by the PPQ algo-
rithm and also the implementation of the TCAM-PPQ. However one may consider a model that390

includes more CPU instructions such as shift-right and more, that are beyond the scope of our
bound.

5. TCAM-PPQ Analytical Results

We compare our scheme TCAM-PPQ and TCAM-PPQ(3) to the optimized TCAM based
PQ implementations RPQ, RPQ-2 and RPQ-CAO that are described in details in Appendix D.395

We calculate the required TCAM space and resulting packet throughput for varying number n
of elements in the queue (i.e., n is the maximal number of concurrent flows). We set w, the key
width to 36 bits which is above the minimum required in the current high end traffic demands.

Figure 6: Total TCAM space (size) requirement for different number of elements PQ for the different implementation
methods.

In Figure 6 we present the total TCAM space (over all TCAMs) required by each scheme.
We assume that the TCAM chip size is limited to 72Mb, which as far as we know is the largest400

TCAM available today [25]. Each of the lines in the graph is cut when the solution starts us-
ing infeasible TCAM building block sizes (i.e., larger than 72Mb). Clearly TCAM-PPQ and
TCAM-PPQ(3) have a significant advantage over the other schemes since they require much
smaller TCAM building blocks (and also total size) than the other solutions for the same PQ
size. Moreover they are the only ones that use feasible TCAM size when constructing a one405
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million elements PQ. All the other variations of RPQ require TCAM of size 1Gb for a million
elements in the queue, which is infeasible in any aspect (TCAM price, or power consumption, or
speed).

Figure 7: Packet throughput as a function of the number of elements. For each implementation we specify its Parallel
Factor (PF) which stands for the maximal number of parallel accesses to different TCAMs.

In Figure 7 we present the potential packet throughput of the schemes in the worst case sce-
nario. Similar to [25] and [28], we calculate the throughput considering only the TCAM accesses410

and not SRAM memory accesses. The rationale is that the TCAM accesses dominate the execu-
tion time and power consumption and it is performed in pipeline with the SRAM accesses. The
TCAM access time is a function of the basic TCAM size. Recall that the TCAM speed increases
considerably as its size reduces, [25, 28]. Next to each scheme we print the Parallelization Fac-
tor(PF), which is defined as the number of TCAM chips the scheme accesses in parallel. As415

can be seen in Figure 7, TCAM-PPQ and TCAM-PPQ (3) are the only schemes with reasonable
throughput, of about 100Mpps for one millions timestamps, i.e., they can be used to construct
a PQ working at a rate of 100Gbps. This is due to two major reasons: First, they use smaller
TCAM chips and thus the TCAM is faster, and Secondly, have high Parallelization Factor and
hence reducing the number of sequential accesses and thus increase the throughput. Note that420

the RPQ scheme achieves 75Mbps but it may be used with 50 elements, due to its high space
requirement. Comparing TCAM-PPQ to TCAM-PPQ(3) we see that the latter is more space
efficient and reach higher throughput levels. Table 1 summarizes the requirement of the different
schemes.

In [15] a PQ design based on shift registers is presented which supports similar throughput425

as RPQ but cannot scale beyond 2048 items. By applying the PPQ scheme (results summarized
in 8) we can extend it to hold one million items while supporting a throughput of 100 million
packets per second as with TCAM-PPQ.
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Method Insert Dequeue space (#entries)
RPQ 2 1 2w · N
RPQ-2 log w + 1 1 4N
RPQ-CAO w/2 + 1 1 2N
TCAM-PPQ 2 3 6w ·

√
N

TCAM-PPQ(3) 4 3 10w · 3
√

N

Table 1: Number of sequential TCAM accesses for the different TCAM based priority queues in an Insert and Dequeue
operations (parallel access scheme is assumed).

Figure 8: Packet throughput as a function of the number of elements.

6. Conclusions

This paper presents a sweet spot construction of a priority queue: a construction that enjoys430

the throughput and speed of small hardware priority queues without the size limitations they
impose. It requires small hardware priority queues as building blocks of size cube root of the
resulting priority queue size. We demonstrate the construction on the TCAM parallel technol-
ogy, that when the size reduces works even faster. Combining these two together results in the
first feasible and accurate solution to the packets scheduling problem while using commodity435

hardware. Thus we avoid the special, complex and inflexible ASIC design, and the alternative
slow software solution (slow due to the inherent logarithmic complexity of the problem).

Our work shows that TCAMs can be used to solve a data structure problem more efficiently
than it is possible in a software based system. This is another step in the direction of under-
standing the power of TCAMs and the way they can be used to solve basic computer science440

problems such as sorting and priority queuing.
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Appendix A. The PPQ algorithm

1: function PPQ.INIT(n)
2: in← 0520

3: out← 1
4: input-BPQ[in]← new BPQ (

√
n)

5: input-BPQ[out]← new BPQ (
√

n)
6: exit-BPQ← new BPQ (

√
n)

7: buffer[in]← new RList (
√

n)525

8: buffer[out]← new RList (
√

n)
9: small-sublists← new RList (

√
n)

10: fused-sublist← null
11: end function

530

12: function BACKGROUND
13: Do 2 steps in merging buffer[in] with fused-sublist . fused-sublist is merged with

buffer[in], both are in the SRAM; In this step two merge steps are performed.
14: if input-BPQ[out].count > 0 then
15: item← input-BPQ[out].Dequeue()535

16: buffer[out].Push(item)
17: end if
18: end function

19: function PPQ.INSERT(item)540

20: if input-BPQ[in].count =
√

N then
. A new full list is ready

21: swap in with out
22: fused-sublist← small-sublists.Pop()
23: input-BPQ[in].Insert (item)545

24: Background()
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25: if fused-sublist.head > buffer[in].head then
. Need to replace the head item of fused-sublist which is in the exit-BPQ, head of buffer[in]
is going to be the new head of fused-sulist

26: exit-BPQ.Delete(fused-sublist.head)550

27: exit-BPQ.Insert (buffer[in].head)
28: end if
29: else
30: Background()
31: input-BPQ[in].Insert (item)555

32: end if
33: end function

34: function PPQ.DEQUEUE
35: min1← min(input-BPQ[in].Min, buffer[out].Min)560

36: if exit-BPQ.Min < min1 then
37: min← exit-BPQ.Dequeue()
38: remove min from min.sublist

. min.sublist is the RList that contained min.
39: local-min← new head of min.sublist565

40: exit-BPQ.Insert (local-min)
41: if min.sublist.count =

√
N then

42: small-sublists.Push(min.sublist)
43: end if
44: else570

45: if input-BPQ[in].min < buffer[out].head then
46: min← input-BPQ[in].Dequeue()
47: else
48: min← buffer[out].Pop()
49: end if575

50: end if
51: Background()
52: return min
53: end function

Appendix B. Reducing the worst case number of BPQ accesses in a PPQ.insert operation580

from 3 to 2

In this appendix we explain how to reduce the worst case number of BPQ accesses in a
PPQ.insert operation from 3 to 2. A careful look at the PPQ.insert algorithm reveals that only
once every

√
n, when the input-BPQ is exactly full may this operation require 3 sequential ac-

cesses, in all other cases this operation requires only 1 sequential access. It requires 3 operation585

if the head of the buffer[in] is smaller than the head of the sublist marked to be merge with it (the
fused-list in code). This 3 sequential accesses consist of Insert to the input-BPQ and Delete and
Insert to the exit-BPQ, can be broken by delaying the last access in the sequence (line 27) to the
next Insert operation. Notice that now each dequeue operation needs to check whether the mini-
mum that needs to be returned is this delayed value, as in the pseudo-code below. Implementing590

this delay requires the following changes to the algorithm:
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• Delaying the insert (in line 27) - the existing line should be replaced by:
1: wait-head← new-sublist.head

• Performing delayed insertion - the following code should be added just before line 31:
1: if wait-head , null then595

2: exit-BPQ.Insert(wait-head)
3: wait-head← null
4: end if

• Check if delayed item should be dequeued - we need to ensure that Insert() doesn’t miss
the minimum item when it is the delayed new-sublist head. By comparing the delayed600

head to other minimums the Dequeue can decide whether it should be used. This change
is implemented by adding the following lines at the beginning of Dequeue:

1: if wait-head , null then
2: if wait-head < input-BPQ.min &&
3: wait-head < merge-list.min then605

4: min← wait-head
5: remove wait-head from wait-head.sublist
6: local-min← new head of wait-head.sublist
7: exit-BPQ.Insert(local-min)
8: wait-head← null610

9: Background()
10: return min
11: end if
12: end if

Appendix C. The Power Sorting Scheme615

1: function POWERSORT(Array In, List Out, n)
2: q← new BPQ (

√
n)

3: for i = 0 to
√

n − 1 do
4: for j = 0 to

√
n − 1 do

5: q.Insert(In[i ·
√

n + j)620

6: end for
7: Subs[i]← new RList (

√
n)

8: for j = 0 to
√

n − 1 do
9: item← q.Dequeue()

10: item.origin-id← i625

11: Subs[i].Push(item)
12: end for
13: end for
14: PowerMerge(Subs, Out, q,

√
n,
√

n)
15: end function630

16: function POWERMERGE(RList Subs[], RList Out, BPQ q, s, t)
17: for i = 0 to s do . s is the number of sublists
18: local-min← Subs[i].Pop()
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19: q.Insert(local-min)635

20: end for
21: count← 0
22: for count = 1 to t do . t is the total num. of items
23: min← q.Dequeue()
24: id← min.origin-id640

25: if Subs[id] not empty then
26: local-min← Subs[id].Pop()
27: q.Insert(local-min)
28: end if
29: Out.Push(min)645

30: end for
31: end function

Appendix D. The TCAM Ranges based PQ (RPQ) as Building Block

Here we construct the basic building block used in all the TCAM based PQ’s constructions,
TCAM-PPQ, TCAM-PPQ(3), and TCAM-PPQ(k). The RPQ in a simpler form was suggested650

in [16] which in turn is based on a TCAM based set of ranges data structure, which is the first
building block described below.

Appendix D.1. Implementing a Set of Ranges with TCAMs

A set of ranges contains range items of the form [a, b], where a and b are integers, a ≤ b.
The set supports three operations: the insertion of a new range, deletion of an existing range and655

a lookup for the range that contains a given point. Only sets of disjoint ranges are considered
here.

Panigrahy and Sharma have shown [16] that we can manage a set of ranges using two TCAM
entries per range, and two TCAM queries per point lookup. They named their solution PIDR
(Point Intersection Disjoint Ranges). Following [16] we define:660

• The Longest Common Prefix (LCP) of integers a and b (represented by w bits) is the longest
prefix shared by the binary representations of a and b. For example, LCP(a = 0101,b =

0111) = 01.

• The Extended LCP (ELCP) patterns of integers a and b, named 0-ELCP and 1-ELCP are
the patterns that extend the LCP of a and b by one more bit (0 and 1) and use ’∗’s’ for665

the remaining bits, for example, let a = 0101,and b = 0111 then 0-ELCP(a, b)=010∗, and
1-ELCP(a, b) = 011∗, (w = 4).

The set of ranges is maintained by keeping for each range [a, b] its two ELCP patterns in
two separate TCAMs, one for the 0-ELCP’s and one for the 1-ELCP’s. The ELCP patterns, that
stored in the TCAMs, are associated with range objects that located on SRAM. It is easy to see670

that if x ∈ [a, b] then x matches exactly one of the ELCP patterns of [a, b]. But the opposite is
not always true, x might match an ELCP of a range that does not contain x.

Thus if x ∈ I = [a, b], then the binary presentation of x matches either 0-ELCP(a, b), or
1-ELCP(a, b). Moreover, while x might match other ELCP’s, the a, b ELCP it matches is the
longest one, i.e., with the fewest number of ∗’s as proved in [16]. Therefore, if the ELCP’s are675
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stored in each TCAM in order of increasing number of ”don’t care”s (∗’s) (as for example in
Figure D.10) then a TCAM that returns the first entry with a pattern that matches x returns either
the 0-ELCP or the 1-ELCP of I.

Figure D.9: (Figure 3 in [16]) The set contains the ranges {[10, 20], [34, 55], [62, 88]} and is searched for the range that
contains the value 51.

The algorithm for range search, as described in Figure D.9 (taken from [16]) is simple, we
query both TCAMs; then we check if one of the matches belongs to a range that contains the680

point. The remaining challenge is then to maintain the ELCP’s in the TCAM so that the longest
prefix match is returned. One way to guarantee it is to use a longest prefix match TCAM, but this
kind of TCAM is too expensive and too slow in large sizes. Panigrahy and Sharma [16] suggest
three principal methods to guarantee longest prefix match with standard TCAM, we name them
PIDR-1, PIDR-2 and PIDR-CAO.685

• The PIDR-1 method uses (w · m) entries TCAM to hold m patterns, where entries jm to
( j + 1)m − 1, j = 0, . . .w − 1 may hold only patterns with j ∗’s. This approach yields an
O(1) accesses per operation in the expense of a factor w in the TCAM size (see Figure
D.10). The actual number of entries is (w − log m + 2)m, which is smaller than wm, since
at the bottom part there are less than m possible patterns of length smaller than log m.690

• The PIDR-2 method uses only m entries each of length 2w holding the pattern and an unary
presentation of the corresponding prefix length. For example let w = 5, 011 ∗ ∗| ∗ ∗1 ∗ ∗
where ∗∗1∗∗ represents the number 3. In general a pattern with prefix length l is appended
with the string ∗l−11∗w−l. This way of presentation enables binary search of the most
longest matching pattern. For Example, to match patterns of length between l1 and l2,695

where l1 ≤ l2, one should attach to the queried value q the pattern 0l1−11l2−l1+10w−l2 . This
approach finds the longest matching prefix in log w accesses and use one access per update.

• The PIDR-CAO stores the patterns in m entries TCAM (of regular w bits) while ensuring
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chain ancestor order (if pattern p1 is the prefix of pattern p2 then p1 is stored bellow p2)
using TCAM memory management scheme called CAO[29]. The idea behind CAO is to700

manage a pool of free entries in the middle of the TCAM and ensuring that each increasing
chain of patterns (each one is the prefix of the next) will be divided between the two filled
regions of the TCAM (above and below the free pool), thereby minimizing the amount
of TCAM updates involved with each pattern insertion. This scheme is reported to have
one TCAM update per insert/delete but this result was achieved while checking updates to705

IP-Lookup tables (that also requires longest prefix order) and there is no reason that this
result would also applies to our case and a worst case of w/2 updates should be considered
(which means w for two TCAMs). Thus, due to this high worst case overhead, this solution
cannot be used in high throughput environments either.

}
01100010
00110101...
0100010*
1110011*...
110000**
010101**...

}

}

}0*******
1*******

Figure D.10: TCAM naive memory management for m patterns of width w, using O(mw) entries. In the TCAM-PPQ
scheme we use m =

√
n.

Appendix D.2. Implementing a Sorted List with TCAMs710

Following [16] a sorted list of items a1 < a2, ..., < am is maintained as a set of ranges as
follows: [0, a1−1],[a1, a2−1],. . .,[am, 2w−1]. In this set the ELCP patterns of the ranges are stored
in the TCAMs and associated with the range objects that are located in SRAM, each range object
is associated with one pattern in the 0-ELCPs TCAM and one in 1-ELCPs TCAM. However, to
be able to extract items by order, we keep the ranges in the set connected to each other forming715

a doubly linked list (see Figure D.11), ordered by their values, i.e., range [ai, ai+1 − 1] is linked
in both directions with range [ai+1, ai+2 − 1]. Each range object is also linked with the items
matching its min or max values (also called the endpoints of the range).
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Following the last discussion, each range object contains the values of its endpoints, the
offsets of its ELCP patterns in the TCAMs, pointers to adjacent range objects and pointers to720

items with key value matching one of its endpoints. Moreover, for each TCAM we use equal
sized SRAM array which allows to translate a query result (the offset of matched pattern) to the
relevant range object. We also extend each item with a pointer to his containing range so we can
save a TCAM query when deleting an item from the sorted list.

We refer to this implementation by Ranges based Priority Queue (RPQ) when it is based on725

PIDR-1, considering it the best candidate for our powering technique. Otherwise we refer to this
implementation by RPQ-2 or RPQ-CAO when based on PIDR-2 or PIDR-CAO, respectively.

In Appendix E we provide RPQ optimizations and implementation details such as man-
agement of TCAM free entries, patterns generation and priorities wrap around. Using these
optimizations and parallel execution on both TCAMs (the 0-ELCP and 1-ELCP) the cost of a730

RPQ is as described in Table D.2.

Operation Updates Queries Comment
Insert(item) 1 1 only 1 update for empty list
Delete(item) 3 0 item is linked to a range
Dequeue() 1 0

Table D.2: RPQ optimization results, with parallel execution on both TCAMs.

TCAMs KeysRanges

SRAM

Figure D.11: RPQ implementation. Only associated TCAM entries (full marked lines) are occupied (the other entries
are currently empty).

Appendix E. Optimizing RPQ

Insertion and deletion from RPQ are recurring operations in the TCAM-PPQ (2-3 times per
packet), therefore decreasing their cost improves the overall performance of TCAM-PPQ. First
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reduction, also implied by [16], requires that when Insert(item) splits a range, it should split735

it in a way that keeps the ELCPs of the range in the TCAMs and reusing them for one of the
resulting sub-ranges. In this way we save 4 TCAM updates, two for deleting the old patterns (of
the splitted range) and two for inserting new patterns (for one of the sub-ranges). This reduction
is possible by the following observation: for each range [a, b] and splitting key x, in one of the
possible splits [a, x − 1] and [x, b] or to [a, x] and [x + 1, b], one of the resulting sub-ranges,740

share the same ELCP patterns as the original. Therefore in order to make a split we only add
a second range and update the standard memory location that specifies the edge values of the
original range.

Note that this insert mechanism can create empty ranges (ranges that are not occupied by
items), for example suppose we have the range [3, 10] where only 3 is associated with an item,745

when we insert 8, the ELCPs of [3, 8] are the same are those of [3, 10], therefore the outcome
sub-ranges will be [3, 8] and [9, 10], where [9, 10] is empty. Empty ranges are not a desirable
outcome because they consume TCAM space but don’t represent any item, thereby decreasing
the list capacity.

To bound the number of empty ranges, we require the delete mechanism to try and merge the750

range (of the deleted item) with one of its neighbor ranges even if only one of his edges is not
occupied (and not both as implied in Section Appendix D.2). This simple extension can ensure
that any two adjacent range edges that doesn’t belong to the same range can’t be both unoccupied,
this is valid since when Insert splits it makes one of the edges occupied and when Delete make
an edge unoccupied it merges it with a neighbor unless the adjacent edge is occupied. Using the755

fact that at least one of every two adjacent edges is occupied, we get that the number of occupied
edges is at least half of the number of edges which means that the number of items is at least the
number of ranges.

The cost of the improved delete mechanism is 3 (when operated parallely on both TCAMs),
since in the worst case we need to delete two ranges and add new merged range. It turns out760

that we can disable the merging in DeleteMin and only delete the range if it remains empty,
thereby reducing its cost to 1. Note that this requires a small change in Insert to merge ranges in
the case an insertion is made to the beginning of the list. The results of these optimizations are
summarized in Table D.2.

Appendix E.1. Managing TCAM free entries765

When we write a new pattern to a TCAM we are required to find an appropriate free entry.
By the naive TCAM management approach, the prefix length of the pattern indicates a region of
size

√
n allocated for entries of that length, but we still need to find a specific free entry within

this region. To do so we manage a pool of free entries per each region. Our pool is implemented
by a counter combined with a linked list. When an entry is requested it is extracted from the770

linked list or if the list is empty the counter value is returned and increased. When an entry is
cleaned its offset is added to the linked list and when the list is reset the linked list is initialized
by empty list and the counter is set to zero. This implementation allows a O(1) reset required by
the sorting list and reusing of cleaned entries required especially by the merge list which is never
reset.775

Appendix E.2. Computing ELCP

Writing a pattern to a TCAM, involves the creation of a mask word with bit ’1’ for ev-
ery “don’t care” character in the pattern, and ’0’ elsewhere. Therefore in order to write the
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ELCP of range [a, b] one should compute the mask value (1 <<
⌈
log2(a ⊕ b)

⌉
) − 1. Computing⌈

log2(a ⊕ b)
⌉
, i.e the most significant bit (msb) of a ⊕ b, for 64 bit numbers can be done with Bit780

Scan Reverse (BSR) instruction provided by modern 64-bit CPUs [30, 31]. When w > 64, the
offset of the msb can be founded by using one query to a TCAM with w entries.

Appendix E.3. Handling priorities’ wrap around

Usually the range of priority values used in the PQ is much smaller than the real range of
timestamps used in the scheduling system and therefore priority values may wrap around. For785

example, timestamps that measure packet transmission times in resolution of byte in 100Gb/s
rate, will increment by 12.5 · 109 per second making a 32bit priority key to wrap around 3 times
per second. Inserting both pre and post wrap around timestamps to the PQ will result with order
distortion (post wrap around timestamps will be regarded as smallest). Overcoming the wrap
around is possible assuming that the active timestamps values are bounded in a range of size 2w,790

where w is the size, in bits, of priority values. The solution we suggest is to use two PQs, that
share the same TCAM resources of a single TCAM based PQ of size n. One PQ stores elements
that originate from timestamps with ’0’ as their w + 1 most significant (MSB) bit, and the second
PQ stores the rest (those with ’1’ as their w + 1 MSB bit). GetMin uses a global precedence-flag
to decide which PQ has precedence over the other (holds the smaller elements). This flag is795

flipped at each wrap around. To allow the two PQs to share the same TCAMS, an extra bit is
appended to each TCAM entry. The total operation time remains almost the same except for the
flag check and/or flip.

Note that this solution can also be applied to a multi queues scenario by making the precedence-
flag global and shared among all the queues in the system.800
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